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Abstract We consider the problem of testing for additivity in the standard multiple
nonparametric regression model. We derive optimal (in the minimax sense) non-
adaptive and adaptive hypothesis testing procedures for additivity against the com-
posite nonparametric alternative that the response function involves interactions of
second or higher orders separated away from zero in L2([0, 1]d)-norm and also pos-
sesses some smoothness properties. In order to shed some light on the theoretical
results obtained, we carry out a wide simulation study to examine the finite sample
performance of the proposed hypothesis testing procedures and compare them with a
series of other tests for additivity available in the literature.
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692 F. Abramovich et al.

1 Introduction

Consider the standard multiple nonparametric regression model with a noise level σ ,
i.e.,

yi = f (xi )+ σ εi , xi = (x1i , . . . , xdi )
′ ∈ [0, 1]d , i = 1, . . . , n, d ≥ 2, (1)

where εi are independent N (0, 1) random variables. It is well-known that for a general
response function f , the direct use of various d-dimensional nonparametric estimators
(e.g., splines, kernel methods, local polynomial regression, orthogonal series expan-
sions, etc.) faces a serious “curse of dimensionality” problem, even for moderate d.
Several multiple nonparametric regression techniques have been devised in response
to this problem, implementing various assumptions on the structure of f .

Probably the most popular existing approach to structural multiple nonparametric
regression is the use of additive models, where the d-dimensional response function
f (x1, . . . , xd) is assumed to be (or, at least, well approximated by) a sum of d uni-
variate functions fl(xl), l = 1, . . . , d. Additive models can be viewed as a natural
nonparametric generalization of the main-effects models in standard linear regression.
They are efficiently tractable and allow for a simple interpretation. In particular, Stone
(1985) showed that in additive models the response function can be estimated with
the same rate of estimation error as in the univariate case. Additive models were pop-
ularized by Hastie and Tibshirani (1990) and nowadays there is a plethora of research
work on fitting and estimating their components. See Buja et al. (1989), Hastie and
Tibshirani (1990), Linton and Nielsen (1995), Linton (1997), Opsomer and Ruppert
(1997, 1998), Sperlich et al. (1999), Amato and Antoniadis (2001), Amato et al. (2002),
Sperlich et al. (2002), Zhang and Wong (2003), Sardy and Tseng (2004) and Fan and
Jiang (2005).

On the other hand, much less attention has been paid to checking the adequacy
of additivity assumption of the underlying response function from the data. Ignoring
such a model check for additivity might lead evidently to misinterpretation of the data
and erroneous inference. Although early work dates back to Tukey (1949), it is only
recently that the problem of testing for additivity has been of real interest. We refer
to Barry (1993), Eubank et al. (1995), Gozalo and Linton (2001), Dette and Derbort
(2001), Dette and Wilkau (2001), Derbort et al. (2002), Sperlich et al. (2002), Li
et al. (2003), De Canditiis and Sapatinas (2004) and Dette et al. (2005) for various
approaches to testing for additivity in the nonparametric regression models. Despite a
growing number of works, almost none of them investigated the optimality of the pro-
posed additivity tests. Gozalo and Linton (2001) and Li et al. (2003) investigated the
asymptotic power of their tests against a sequence of local alternatives. However, such
a approach in nonparametric testing is known to be generally restricted to a too small
class of alternative models (see, e.g., Horowitz and Spokoiny, 2001). Härdle et al.
(2001) suggested testing additivity by performing a series of tests for no second order
interactions for each pair (xl , x ′

l ), l �= l ′. They demonstrated asymptotic optimality
(in the minimax sense) of each individual test against a smooth nonparametric alter-
native but the unavoidable multiplicity effect for the overall testing remained unclear.
Moreover, possible presence of higher order interactions was ignored.
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Testing additivity 693

In this paper, we derive asymptotically (as the sample size grows) optimal (in the
minimax sense) non-adaptive and adaptive general tests for additivity for a wide class
of alternatives. Borrowing ideas from the theory of analysis of variance, the underlying
response function f in model (1), assuming f ∈ L2([0, 1]d), admits the following
unique decomposition

f (x) = µ+
d∑

l=1

fl(xl)+ f0(x), x ∈ [0, 1]d , (2)

where µ is a constant (the grand mean), fl are 1-dimensional functions of xl (the
main effects) and f0 involves all interactions of second and higher orders (see, e.g.,
Antoniadis 1984). The components of the decomposition (2) satisfy the following
identifiability conditions

∫
[0,1] fl(xl) dxl = 0, l = 1, . . . , d, (3)

∫
[0,1]d f0(x) dx = 0, (4)

∫
[0,1]d−1 f0(x) dx(−l) = 0, l = 1, . . . , d, (5)

where x(−l) = (x1, . . . , xl−1, xl+1, . . . , xd). Testing for additivity in the model
(1)–(2), subject to identifiability conditions (3)–(5), is equivalent to testing for no
interactions of second or higher orders which is, in turn, equivalent to testing the null
hypothesis

H0 : f0 ≡ 0. (6)

Certain regularity assumptions on f0 are required to be able to distinguish it from
noise. In particular, we assume that f0 belongs to a Besov ball Bs

p,q(M) of radius
M > 0 on [0, 1]d , where 1 ≤ p, q ≤ ∞ and s > d/p. Besov classes are known
to have exceptional expressive power: for particular choices of the parameters s, p
and q, they include the traditional Hölder (p = q = ∞) and Sobolev (p = q = 2)
classes of smooth functions, and the class of inhomogeneous functions of bounded
variation sandwiched between B1

1,∞ and B1
1,1. The parameter p can be viewed as a

degree of function’s inhomogeneity while s is a measure of its smoothness. Roughly
speaking, the (not necessarily integer) parameter s indicates the number of function’s
(fractional) derivatives, where their existence is required in an L p-sense, while the
additional parameter q provides a further finer gradation. We refer to Meyer (1992,
Chaps. 2 and 6) for rigorous definitions and a detailed study of Besov spaces.

In addition, to distinguish between the two hypotheses, the set of alternatives should
be also separated away from zero by some distance ρn tending to zero as n tends to
infinity. In this paper, we measure this distance by the L2([0, 1]d)-norm of f0, || f0||2,
and the resulting nonparametric alternative hypothesis is then of the form

H1 : f0 ∈ F(ρn) = { f0 : f0 ∈ Bs
p,q(M), || f0||2 ≥ ρn}. (7)
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694 F. Abramovich et al.

As the sample size increases, alternatives closer and closer to zero can be detected
without loosing accuracy and for the prescribed error probabilities of Type I (errone-
ous rejection of H0) and Type II (erroneous acceptance of H0), the rate of decay of
ρn can be viewed as a natural measure of goodness of a test (see, e.g., Ingster 1982,
1993). The goal then is to find the fastest rate for which such testing is still possible
and to construct the corresponding rate-optimal test.

To develop the testing procedures for additivity in (1), we use the minimax approach
for hypothesis testing of Ingster (1982, 1993). In particular, we adapt the results for the
minimax nonparametric hypothesis testing for the presence of a signal in the 1-dimen-
sional Gaussian white noise model originated by Ingster (1982) and further developed
in, e.g., Ingster (1993), Spokoiny (1996), Lepski and Spokoiny (1999), Guerre and
Lavergne (2002), Ingster and Suslina (2005) for various separation distances between
the two hypotheses and different smoothness function classes under the alternative.
(We refer to Ingster and Suslina, 2003 for a comprehensive account on minimax
testing of nonparametric hypotheses in Gaussian models.) More precisely, we derive
asymptotically minimax non-adaptive and adaptive hypothesis testing procedures for
additivity in the nonparametric regression model (1) against the composite nonpara-
metric alternative hypothesis (7). The proposed tests are similar in spirit to those of
Spokoiny (1996) for testing the presence of a signal in the 1-dimensional Gaussian
white noise model, and are based on the empirical wavelet coefficients of the data.
Wavelet decompositions allow one to characterize different types of smoothness con-
ditions assumed on the response function by means of its wavelet coefficients for the
whole range of Besov classes (see, e.g., Meyer 1992, Chap. 6).

The paper is organized as follows. In Sect. 2, we provide a brief background on
minimax testing and multivariate wavelet analysis necessary for the proposed meth-
odology. The minimax non-adaptive and adaptive hypothesis testing procedures for
additivity in nonparametric regression are derived in Sect. 3. In Sect. 4, we carry out
a wide simulation study to examine the finite sample performance of the proposed
hypothesis testing procedures for testing additivity in the 2-dimensional (bivariate)
nonparametric regression setting on the unit square, and make comparisons with a
series of other tests for additivity available in the literature. Some concluding remarks
are made in Sect. 5. The proofs of the theoretical results obtained in Sect. 2 and 3 are
deferred to the Appendix.

2 Formulations and definitions

2.1 Nonparametric hypothesis testing

Testing the hypotheses (6)–(7) is a nonparametric functional hypothesis testing prob-
lem and we start with a brief discussion of several main notions.

A (non-randomized) test φ is a measurable function of the observations with two
values {0, 1} corresponding to accepting and rejecting the null hypothesis H0 respec-
tively. The probability of a Type I error is defined as

α(φ) = P f0≡0(φ = 1),
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Testing additivity 695

while the probability of a Type II error for the composite nonparametric alternative
hypothesis is defined as

β(φ, ρn) = sup
f0∈F(ρn)

P f0(φ = 0).

We focus on the asymptotic behavior of nonparametric hypothesis testing proce-
dures as n → ∞. For prescribed α and β, the rate of decay to zero of ρn , as n → ∞, is
a standard measure of asymptotical goodness of a test (see, e.g., Ingster 1982, 1993).
The minimax rate of testing ρn is defined as follows:

Definition 1 A sequence ρn is the minimax rate of testing if ρn → 0 as n → ∞ and
the following two conditions hold

(i) for any ρ′
n satisfying

ρ′
n/ρn = on(1),

one has

inf
φn

[
α(φn)+ β(φn, ρ

′
n))
] = 1 − on(1),

where on(1) is a sequence tending to zero as n → ∞.
(ii) for any α > 0 and β > 0 there exists a constant c > 0 and a test φ∗

n such that

α(φ∗
n ) ≤ α + on(1),

β(φ∗
n , cρn) ≤ β + on(1).

The first condition in Definition 1 states that testing with a rate faster than ρn is
impossible, while the second one guarantees the existence of a test with prescribed
error probabilities if the distance between the null and the alternative set is of order
ρn .

The following theorem establishes the minimax rate for testing additivity in the
standard multiple nonparametric regression model (1)–(2), subject to identifiability
conditions (3)–(5), i.e., testing the hypotheses (6)–(7).

Theorem 1 Let the parameter θ = (s, p, q,M) of the Besov ball Bs
p,q(M) be known,

where 1 ≤ p, q ≤ ∞, sp > d, s > d/4 for p ≥ 2, and M > 0. Then, the minimax
rate for testing the hypotheses (6)–(7) in the model (1)–(2), subject to identifiability
conditions (3)–(5), is

ρn = n− 2s′′
4s′′+d as n → ∞, (8)

where s′′ = s − d/(2p′)+ d/4 and p′ = min(p, 2).
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696 F. Abramovich et al.

Remark 1 As a by-product, Theorem 1 provides the minimax rate of testing the
presence of a signal in the standard d-dimensional (d ≥ 1) nonparametric regression
model against the composite nonparametric alternative hypothesis that it is separated
away from zero and belongs to some Besov ball. In this setup, the rate (8) extends the
d-dimensional results of Guerre and Lavergne (2002) for Hölder balls to Besov balls.

2.2 Multivariate wavelet series

In this section, we briefly recall some relevant issues on the multivariate orthonor-
mal wavelet series on [0, 1]d . Let φ be a scaling function and ψ a mother wavelet
that form an orthonormal basis in L2[0, 1]. For simplicity of exposition consider a
periodic wavelet series, where, in particular, φ ≡ 1. Despite the poor behaviour of
periodic wavelets near the boundaries, where they might yield large coefficients for
non-periodic functions, they are commonly used since their numerical implementation
is particular simple and does not involve boundary corrections (see, e.g., Mallat 1999,
Sect. 7.5).

For any integer h = 0, 1, . . . , 2d − 1 written in the binary form as h = h1 . . . hd ,
define the corresponding d-dimensional function

ψh(x) =
d∏

l=1

ψ(xl)
hlφ(xl)

1−hl =
d∏

l=1

ψ(xl)
hl .

For convenience of further representation, re-arrange the order of ψh(x) so that the
first d + 1 functions ψh(x) will be

ψ0(x) =
d∏

l=1

φ(xl) ≡ 1, ψh(x) = ψ(xh)
∏

l �=h

φ(xl) = ψ(xh), h = 1, . . . , d. (9)

For any j ≥ 0, define the j-th index set J j = {( j, k1, . . . , kd), ki = 0, 1, . . . , 2 j −
1; i = 1, . . . , d}. Obviously, Card(J j ) = 2 jd . For each I ∈ J j , let

ψh
I (x) = 2 jd/2ψh(2 j x1 − k1, . . . , 2 j xd − kd).

The set of functions {ψ0, ψh
I , h = 0, 1, . . . , 2d − 1, j ≥ 0, I ∈ J j } constitutes an

orthonormal (periodic) wavelet basis in [0, 1]d (see, e.g., Mallat 1999, Sect. 7.7) and
any f in the model (1) can be represented as

f (x) = w0 +
2d−1∑

h=1

∑

j≥0

∑

I∈J j

wh
Iψ

h
I (x),
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Testing additivity 697

where

w0 =
∫

[0,1]d
f (x)ψ0(x)dx =

∫

[0,1]d
f (x)dx and wh

I =
∫

[0,1]d
f (x)ψh

I (x)dx.

Using decomposition (2), identifiability conditions (3)–(5) and exploiting (9), f allows
the following wavelet series representation

f (x) = w0︸︷︷︸
µ

+
d∑

h=1

∑

j≥0

∑

I∈J j

wh
Iψ

h
I (xh)

︸ ︷︷ ︸
fh(xh)

+
2d−1∑

h=d+1

∑

j≥0

∑

I∈J j

wh
Iψ

h
I (x)

︸ ︷︷ ︸
f0(x)

. (10)

Multivariate wavelet series as defined above form unconditional bases in various
Besov spaces on [0, 1]d and the Besov norm of a function is related to a sequence
space norm of its wavelet coefficients. In particular, let the original (1-dimensional)
mother wavelet ψ be of regularity r > 0. Then, in view of (10), for any 0 < s <
r, 1 ≤ p, q ≤ ∞ one has (see, e.g., Meyer 1992, Sect. 6.10)

|| f0||Bs
p,q




⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∑
j≥0 2 j (s+d/2−d/p)q 1 ≤ q < ∞,

(∑2d−1
h=d+1

∑
I∈J j

|wh
I |p
)q/p

)1/q

,

sup j≥0

{
2 j (s+d/2−d/p) q = ∞.

(∑2d−1
h=d+1

∑
I∈J j

|wh
I |p
)1/p

}
,

(11)

In the wavelet domain, the null hypothesis (6) (additivity) is equivalent to

H0 :
2d−1∑

h=d+1

∞∑

j=0

∑

I∈J j

(wh
I )

2 = 0.

2.3 Discrete wavelet coefficients

In practice, however, one typically deals with discrete data as in the model (1). Assume
for simplicity that the sample size is n = 2d J for some integer J > 0. The corre-
sponding d-dimensional orthogonal discrete wavelet transform (DWT) of the sampled
function values f (xi ), i = 1, . . . , n, yields the set of DWT coefficients w̃h

I , h =
0, 1, . . . , 2d − 1, j = 0, 1, . . . , J − 1, I ∈ J j . For the considered periodic case
and equispaced design, no boundary corrections and preconditioning data are needed
for the DWT. The DWT coefficients w̃h

I provide a close approximation to the contin-
uous wavelet coefficients wh

I (see, e.g., Shenza 1992; Johnstone and Silverman 2004,
2005). In particular, from Proposition 5 of Johnstone and Silverman (2004) it follows
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698 F. Abramovich et al.

that the equivalence between f0’s Besov norm and the sequence space norm of wh
I in

(11) remains true (up to probably different constants) for w̃h
I as well. In terms of the

DWT coefficients,
∑2d−1

h=d+1
∑J−1

j=0
∑

I∈J j
(w̃h

I )
2 = 0 under the null hypothesis.

3 Main results

3.1 A Non-adaptive minimax test for additivity

We now construct a rate-optimal test for testing the hypotheses (6)–(7) where the
parameters θ = (s, p, q,M) of the Besov ball Bs

p,q(M) are assumed to be known and
1 ≤ p, q ≤ ∞, sp > d, s > d/4 for p ≥ 2, M > 0. We exploit the equivalence
between the Besov norm of f0 and the corresponding sequence space norm of its
wavelet coefficients (11) and perform testing within the wavelet domain.

Given the sampled data in the model (1), where for simplicity of exposition we
assume that n = 2d J for some positive integer J , choose a mother wavelet ψ of regu-
larity r > s with r −1 vanishing moments, and take the corresponding d-dimensional
DWT of (1). In the wavelet domain one then has

Y h
I = w̃h

I + σ√
n
ξ h

I , I ∈ J j , j = 0, 1, . . . , J − 1, h = 0, 1, . . . , 2d − 1,

where Y h
I are the empirical wavelet coefficients of the data, w̃h

I are the discrete wave-
let transform of the sampled function values { f (xi )}, and ξI are independent N (0, 1)
random variables.

The test will be based on the set of {Y h
I }. Define the levels jn and jθ as

jn = (1/d) log2 n (= J ), jθ = 2

4s′′ + d
log2 n, (12)

where assume that jθ in (12) is integer; otherwise, we take the corresponding integer
part. Since sp > d and s > d/4 for p ≥ 2, one can easily verify that jθ < jn .

Let J n = J − ∪ J +, where J − = {0, 1, . . . , jθ − 1} (coarse levels) and J + =
{ jθ , . . . , jn − 1} (fine levels). For each j ∈ J −, define S j to be

S j =
2d−1∑

h=d+1

∑

I∈J j

(
(Y h

I )
2 − σ 2

n

)

while, for each j ∈ J + and for a given threshold λ > 0, define S j (λ) to be

S j (λ) =
2d−1∑

h=d+1

∑

I∈J j

(
(Y h

I )
21
{
|Y h

I | > σ√
n
λ

}
− σ 2

n
b(λ)

)
,
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where

b(λ) = E

[
ξ21(|ξ | > λ)

]
= 2(�(−λ)+ λϕ(λ)),

1(A) is the indicator function of the set A, ξ is a standard normal N (0, 1) random
variable, and � and ϕ denote respectively the cumulative distribution and probability
density functions of ξ .

With the above notations, introduce the following test statistics

T ( jθ ) =
∑

j∈J −

S j (13)

and

Q( jθ ) =
∑

j∈J +

S j (λ j ), (14)

where

λ j = 4
√

d( j − jθ + 8) ln 2. (15)

Let V 2
0 ( jθ ) and W 2

0 ( jθ ) be the variances of T ( jθ ) and Q( jθ ), respectively, under H0.
It is easy to see that

V 2
0 ( jθ ) = 2

σ 4

n2 2 jθd and W 2
0 ( jθ ) = σ 4

n2

∑

j∈J +

2 jdd(λ j ),

where

d(λ) = E

[
ξ41(|ξ | > λ)

]
− b2(λ)

and

E

[
ξ41(|ξ | > λ)

]
= 6�(−λ)+ 2λ(3 + λ2)ϕ(λ).

Finally, for a given significance level α ∈ (0, 1), define the following test

φ∗
n = 1

⎧
⎨

⎩
T ( jθ )+ Q( jθ )√
V 2

0 ( jθ )+ W 2
0 ( jθ )

> z1−α

⎫
⎬

⎭ , (16)

where z1−α is (1 − α)100%-th percentile of the N (0, 1) distribution.
The resulting test statistic has a clear intuitive meaning and is essentially the stan-

dardized sum of squares of the thresholded empirical wavelet coefficients Y h
I with the
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700 F. Abramovich et al.

properly chosen level-dependent thresholds, where coefficients on the coarse levels
j ∈ J− are not thresholded. The resulting coefficients are centered to yield E(S j ) = 0
and E(S j (λ)) = 0 under H0. The null hypothesis is rejected when the above test sta-
tistic is large.

The following theorem establishes the asymptotic optimality of the proposed (non-
adaptive) testing procedure φ∗

n defined in (16).

Theorem 2 Let the mother wavelet ψ be of regularity r > s, and let the parameter
θ = (s, p, q,M) of the Besov ball Bs

p,q(M) be known, where 1 ≤ p, q ≤ ∞, sp > d,
s > d/4 for p ≥ 2, and M > 0. Then, for a given significance level α ∈ (0, 1), the
test φ∗

n defined in (16) for testing

H0 : f0 ≡ 0 versus H1 : f0 ∈ F(ρn) = { f0 : f0 ∈ Bs
p,q(M), || f0||2 ≥ ρn}

is a level-α asymptotically minimax test as n → ∞. That is, for any β ∈ (0, 1), it
attains the minimax testing rate (8)

ρn = n− 2s′′
4s′′+d as n → ∞,

where s′′ = s − d/(2p′)+ d/4 and p′ = min(p, 2).

Remark 2 For p ≥ 2, which corresponds to “spatially homogeneous” functions whose
wavelet coefficients are concentrated on coarse resolution levels, the above optimal
test (16) can be simplified by truncating the wavelet series at level jθ − 1. Indeed,
by working along the lines of Sect. 3.2.1 in Abramovich et al. (2004) for testing the
presence of a signal in the 1-dimensional Gaussian white noise model, the level-α
asymptotically minimax test φ∗

n for p ≥ 2 can be then simplified as

φ∗
n = 1

{
T ( jθ )

V0( jθ )
> z1−α

}
.

3.2 An adaptive minimax test for additivity

The rate-optimal test derived in the previous section relies on the knowledge of the
parameters θ = (s, p, q,M) of the Besov ball Bs

p,q(M). In practice, however, they
are typically unknown. We now consider the adaptive local testing problem where the
above parameters are not specified a priori but assumed to lie within a given range.
We first construct the adaptive test and then show its asymptotic optimality.

Assume now that θ = (s, p, q,M) are unknown but d/4 < s ≤ smax, 1 ≤ p ≤
pmax, 1 ≤ q ≤ ∞, sp > d and 0 < Mmin ≤ M ≤ Mmax < ∞. Denote such a range of
θ by T . For each given set of parameters θ one may determine jθ from (12). In fact, the
range T derives essentially a range of admissible levels of the form jmin ≤ jθ ≤ jmax.
One performs then a series of tests of type (16) for each admissible level and rejects
the null hypothesis if it is rejected at least for one of them.

123



Testing additivity 701

More precisely, recall that jn = (1/d) log2 n from (12), and let jmin = 2
4s′′

max+d log2 n,

jmax = jn − 1 with s′′
max = smax − d/(2p′

max) + d/4, where p′
max = min(pmax, 2).

Again, we assume that the right-hand sides of jn and jmin are integers; otherwise, we
take the corresponding integer parts.

Choose a mother wavelet of regularity r > smax. Since the number of admissi-
ble levels is O(ln n), a Bonferroni type correction for multiple testing leads to the
following asymptotic adaptive test

φa
n = 1

⎧
⎨

⎩ max
jmin≤ jθ≤ jmax

T ( jθ )+ Q( jθ )√
V 2

0 ( jθ )+ W 2
0 ( jθ )

>
√

2 ln ln n

⎫
⎬

⎭ . (17)

The following theorem establishes the asymptotic optimality of the proposed (adap-
tive) testing procedure φa

n defined in (17).

Theorem 3 Let the mother wavelet ψ be of regularity r > smax, and let the param-
eter θ = (s, p, q,M) of the Besov ball Bs

p,q(M) be unknown but 1 ≤ p ≤ pmax,
1 ≤ q ≤ ∞, sp > d, d/4 < s ≤ smax, and 0 < Mmin ≤ M ≤ Mmax < ∞. Then, the
rate ρn of the test φa

n defined in (17) for testing

H0 : f0 ≡ 0 versus H1 : f0 ∈ F(ρn) = { f0 : f0 ∈ Bs
p,q(M), || f0||2 ≥ ρn}

is

ρn = n− 2s′′
4s′′+d (ln ln n)

s′
4s′′+d as n → ∞,

where s′′ = s − d/(2p′)+ d/4, s′ = s + d/2 − d/p′ and p′ = min(p, 2).
Moreover, there exists a constant c such that

α(φa
n ) = on(1) and sup

T
β(φa

n , cρn)) = on(1),

where T is the range of θ .

Theorem 3 establishes that the adaptive test φa
n is nearly rate-optimal (up to a ln ln

n-factor). The results of Spokoiny (1996) indicate there is no adaptive testing without
loss of efficiency of the test and such an extra log-log factor is unavoidable (though not
essential) price for adaptivity. Furthermore, Theorem 3 demonstrates the degenerate
behavior of the error probabilities of φa

n which is typical for adaptive testing (see, e.g.,
Ingster 1993; Spokoiny 1996).

Remark 3 Similar to the nonadaptive testing (see Remark 2), if, in addition, it is known
that p ≥ 2, the adaptive test φa

n for p ≥ 2 can be simplified as

φa
n = 1

{
max

jmin≤ jθ≤ jmax

T ( jθ )

V0( jθ )
>

√
2 ln ln n

}
.
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4 Numerical experiments

We conducted a wide simulation study to evaluate the finite sample performance of
the proposed adaptive minimax test (17) (Amin) for testing additivity in the standard
2-dimensional (bivariate) nonparametric regression setting. We have applied Amin to
a battery of test functions considered previously in the literature.

We have also compared Amin with a series of other known procedures for testing
additivity, namely the Vd and V f tests of Eubank et al. (1995), the T̂ (1,2)n (with order
l = 1) test of Dette and Derbort (2001), the M2,α (with order l = 2) test of Derbort
et al. (2002), and the T1n , T2n , T3n and T4n tests of Dette et al. (2005). The Vd and V f

tests are based on truncated Fourier series estimation of the interactive term and its
further testing for the significant difference from zero. The T̂ (1,2)n and M2,α tests use
similar ideas but involve various estimates of the L2-distance between the full model
(2) and the additive model under the null hypothesis (6). The T1n , T2n , T3n and T4n

tests are based on residuals from an internal marginal integration estimation.
The computational algorithms related to wavelet analysis were performed using

Version 8 of the WaveLab toolbox for MATLAB that is freely available from http://
www-stat.stanford.edu/software/software.html. The entire study was carried out using
the MATLAB programming environment.

The test functions used in the simulation study are the following:

m1(t1, t2) = 0,
m2(t1, t2) = t1 + t2,
m3(t1, t2) = exp (t1)+ sin (π t2),
m4(t1, t2) = sin (π t1)+ sin (π t2),
m5(t1, t2) = exp (t1)+ exp (t2),

(see Derbort et al. 2002),

m6(t1, t2) = t1 t2,
m7(t1, t2) = exp (5(t1 + t2)) / (1 + exp (5(t1 + t2))) − 1,
m8(t1, t2) = 0.5 (1 + sin (2π(t1 + t2))),
m9(t1, t2) = 64 (t1t2)3(1 − t1t2)3,
m10(t1, t2) = (t1 + t2) / 2 + (1 outlier),

m11(t1, t2) = G(t1)G(t2)/36,

where

G(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

15t, 0 ≤ t ≤ 0.2,
5 − 10t, 0.2 ≤ t ≤ 0.4,
−9 + 25t, 0.4 ≤ t ≤ 0.6,
18 − 20t, 0.6 ≤ t ≤ 0.8,
−2 + 5t, 0.8 ≤ t ≤ 1,

(see Barry 1993; Eubank et al. 1995; Derbort et al. 2002), and

m[i j]
12 (t1, t2) = hi (t1)+ h j (t2)+ γ hi (t1)h j (t2), i, j = 1, 2, 3, 4, 5,

m[i j]
13 (t1, t2) = (hi (t1)+ h j (t2))δ, i, j = 1, 2, 3, 4, 5,
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where the parameters γ �= 0 and δ �= 1 specify the deviation from additivity, and
h1, h2, h3, h4 and h5 are the Blip, Heavisine, Spikes, Corner and Doppler functions
respectively (see, e.g., Antoniadis et al. 2001). We set γ = 1, 2 and δ = 1/2, 1/4.
The latter functions are examples of inhomogeneous functions often arising in signal
processing.

For each test function the data were generated on a two-dimensional regular lattice
{(t1i , t2 j ) : i = 0, 1, . . . , n − 1; j = 0, 1, . . . , n − 1} in [0, 1]2 for a small grid
size (n = 32), a medium grid size (n = 64) and a larger grid size (n = 256). The
comparative study of various testing procedures was performed by an empirical power
analysis. The empirical power functions of the tests were computed from M = 500
Monte Carlo replications as a function of the signal-to-noise ratio (SNR), for SNR
varying within the interval [0.01:0.04:2] (50 values overall).

The tests T1n, T2n, T3n and T4n are based on the residuals of the Internalized
Marginal Integration and the Internalized Nadaraya-Watson estimators of the response
function. As it was pointed out also in Dette et al. (2005), for finite samples these meth-
ods involve cross-validation techniques for choosing tuning parameters and bootstrap
for calculating quantiles for the corresponding test statistics that makes them computa-
tionally extremely expensive. To perform T1n, T2n, T3n and T4n on 500 Monte Carlo
replications for 50 values of SNR even for a grid size n = 16 required a tremendous
computing time while the procedure computationally collapsed for n = 32. Moreover,
for such a small grid size, the approximations of the quantiles were very poor. Due to
these hard computational restrictions we decided to omit these tests from the study.

For the Amin test for all test functions we used the ranges 2≤ jθ ≤4(= log2(32)−1)
for n = 32, 2 ≤ jθ ≤ 5 (= log2(64)−1) for n = 64 and 2 ≤ jθ ≤ 7(= log2(256)−1)
for n = 256 respectively. We should also note the adaptive test Amin in (17) was based
on the asymptotic properties of the maxima of weakly dependent Gaussian random
variables, where the number of admissible resolution levels was supposed to be suf-
ficiently large. Such a condition, obviously, holds only for very large samples. In
practice, to perform Amin at the given significant level α, one needs to derive the
percentile ζ1−α of the exact distribution of the maxima under the null hypothesis:

φ̃a
n = 1

⎧
⎨

⎩ max
jmin≤ jθ≤ jmax

T ( jθ )+ Q( jθ )√
V 2

0 ( jθ )+ W 2
0 ( jθ )

> ζ1−α

⎫
⎬

⎭ .

Estimation of quantiles ζ1−α for various α was made by independent Monte Carlo
studies. For the chosen ranges given above, the empirical quantiles were ζ0.90 = 2.03,
ζ0.95 = 2.52 and ζ0.99 = 3.57 for n = 32; ζ0.90 = 2.11, ζ0.95 = 2.55 and ζ0.99 = 3.46
for n = 64, and ζ0.90 = 2.24, ζ0.95 = 2.62 and ζ0.99 = 3.40 for n = 256. In all cases,
the evaluation of the quantiles was based on 100,000 runs.

Finally, the noise level σ was also assumed unknown and estimated from the data.
For the Vd , V f , M2,α and T̂ (1,2)n tests, σ was estimated by various consistent esti-
mators (see the corresponding papers for more details), while for the wavelet-based
Amin test, it was estimated by the median absolute deviation of the empirical wavelet
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Fig. 1 Empirical power for the five tests for the test function m9, n = 32 (first row), n = 64 (second row),
and n = 256 (third row). The dash line refers to the Vd test; the dash-dot line refers to the V f test; the

solid-circle line refers to the M2,α (with order l = 2) test; the solid-asterisk line refers to the T̂ (1,2)n (with
order l = 1) test; the solid-diamond line refers to the Amin test

coefficients on the finest resolution level divided by 0.6745 as proposed by Donoho
and Johnstone (1994).

Relative performances of the testing procedures for different test functions and
various significance levels α were similar in magnitude and we report below only the
results for m9 (smooth function) and m13 (i = 2, j = 4, δ = 1/4) (inhomogeneous
function) for all significance levels α. Figure 1 shows the empirical powers of the
simulation study for m9, n = 32, n = 64 and n = 256, for the Vd , V f , M2,α , T̂ (1,2)n
and Amin tests, while Fig. 2 shows the same results for m13. For the test function m9,
and for all chosen grid sizes n = 32, n = 64 and n = 256, Amin competes with Vd

and V f , while M2,α and T̂ (1,2)n yield consistently worse results. For the test function
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Fig. 2 Empirical power for the five tests for the test function m13, n = 32 (first row), n = 64 (second
row), and n = 256 (third row). The dash line refers to the Vd test; the dash-dot line refers to the V f test;

the solid-circle line refers to the M2,α (with order l = 2) test; the solid-asterisk line refers to the T̂ (1,2)n
(with order l = 1) test; the solid-diamond line refers to the Amin test

m13, and for all grid sizes n = 32, n = 64 and n = 256, Amin clearly outperforms
all its counterparts. The reason of the different behavior of Amin relatively to Vd

and V f for m9 and m13 lies in the properties of Fourier and wavelet series expan-
sions. It is well-known that Fourier series are more suitable for the analysis of smooth
homogeneous functions while wavelets are much more appropriate for representing
inhomogeneous signals. The poor performance of M2,α and T̂ (1,2)n for m13 is also due
to the characteristics of these tests designed for very smooth functions.

Overall, the simulation results show good finite sample properties of the suggested
wavelet-based minimax adaptive testing procedure especially applied to inhomoge-
neous response functions. From a computational point of view, Amin resulted in the
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best performance. Note also that the considered grid sizes may be still too small to
appreciate all the potentialities of the proposed (asymptotically in nature) minimax
testing methodology.

5 Concluding remarks

We have considered the problem of testing for additivity in the standard multiple non-
parametric regression model. We have derived asymptotically optimal (in the minimax
sense) nonadaptive and adaptive tests for additivity against a wide set of alternatives.
These tests are based on the empirical wavelet coefficients of the data and are compu-
tationally fast. The empirical power analysis of the tests in comparison with several
existing counterparts demonstrates their good performance in finite sample situations,
especially for inhomogeneous functions. The established asymptotic results obtained
for the standard multiple nonparametric regression model can be straightforwardly
modified to the corresponding d-dimensional Gaussian white noise model. For either
model, the developed approach can be easily adapted for testing the significance of
any particular interaction(s) of any order(s) by testing the significance of the corre-
sponding subset of wavelet coefficients.
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Appendix

Throughout the proofs in the Appendix, we use C to denote a generic positive constant,
not necessarily the same each time it is used, even within a single equation.

Proof of Theorem 1

We prove here only the lower bound, i.e., that the rate (8) in Theorem 1 cannot be
improved. The upper bound is a consequence of Theorem 2 which shows the test φ∗

n
proposed in (16) achieves this lower bound. The notations defined in Sect. 3.1 are
adopted in the proof that follows.

We are going to prove that for any ρ′
n such that cn := ρ′

n/ρn = on(1) and for any
test φn , one has

inf
φn

{α(φn))+ β(φn, ρ
′
n)} ≥ 1 − on(1). (18)

Following standard arguments, we replace the minimax problem by a Bayes problem.
Let πn be prior measures on the alternative set F(ρ′

n)={ f0 : f0 ∈ Bs
p,q(M), || f0||2 ≥

ρ′
n} satisfying

πn(F(ρ′
n)) → 1, as n → ∞. (19)
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Let also Pπn be the corresponding Bayes measure for the model (1), i.e., Pπn =∫
[0,1]d P f πnd f , and define Lπn = dPπn

dP0
, where the measure P0 corresponds to the

null hypothesis. Ingster (1993) showed that to prove (18) it is sufficient to verify that,
under the P0-measure, one has

Lπn → 1 as n → ∞. (20)

We now construct the measures πn satisfying (19) and (20).
Consider first the case p ≥ 2. Note that in this case p′ = 2 and s′′ = s and recall

from (12) that jθ = 2
4s′′+d log2 n. Define a random function

f0(x) = un cn

2d−1∑

h=d+1

∑

j∈J −

∑

I∈J j

ξ h
I ψ

h
I (x),

where un = n−(2s+d)/(4s+d) and ξ h
I are independent random variables taking the val-

ues ±1 with probabilities 1/2. Let a measure πn correspond to the distribution of such
a random function f0.

Exploiting the embedding properties of Besov spaces and the equivalence between
the Besov norm of a function and the corresponding sequence space norm of its wavelet
coefficients (11), for jθ and un defined above, we have

|| f0||Bs
p,q

≤ C || f0||Bs
p,1


 uncn

∑

j∈J −

2 j (s+d/2−d/p)

⎛

⎜⎝
2d−1∑

h=d+1

∑

I∈J j

|ξ h
I |
⎞

⎟⎠

1
p

= uncnld2 jθ (s+d/2) < ∞,

where ld = #{h : h = d + 1, d + 2, . . . , 2d − 1} = 2d − d − 1. Furthermore, by
Parseval’s identity, one can easily verify that || f0||2 = Ccnρn = Cρ′

n . Hence, for the
constructed measures, πn{ f0 ∈ F(ρ′

n)} = 1.
Consider now the case p < 2, where p′ = p and s′′ = s −d/(2p)+d/4. Consider

a random function

f0(x) = n−1/2cn

2d−1∑

h=d+1

∑

j∈J −

∑

I∈J j

ξ h
I ψ

h
I (x),

where ξ h
I are now independent random variables taking the values ±1 and 0 with

probabilities ph
I /2 and 1 − ph

I respectively, with ph
I = 2− jθd/2. Let a measure πn

corresponds to the distribution of such a random function f0. By the law of large
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numbers,

l−1
d 2− jd2 jθd/2

2d−1∑

h=d+1

∑

I∈J j

|ξ h
I | P→ 1. (21)

Similarly to the case p ≥ 2, using (21), a straightforward calculus implies that, with
high probability, || f0||Bs

p,1
< ∞ and || f0||2 = Ccnρn = Cρ′

n . Hence, the constructed
measures πn satisfy (19).

Following the arguments of Ingster (1993) with obvious modifications for the case
d > 1, one can show that, for each of the above prior measuresπn , (20) holds. Thus, the
lower bound is obtained. This, together with the upper bound obtained in Theorem 2,
completes the proof of Theorem 1. 
�

Proofs of Theorems 2 and 3

In order to prove Theorems 2 and 3, we need the following lemmas that provide the
necessary bounds for the statistics Eµ(T ( jθ ) + Q( jθ )) and

√
Vµ(T ( jθ )+ Q( jθ )),

where Eµ and Vµ denotes the expectation and variance operators respectively when
the true parameter is µ.

Lemma 1 Let F(ρn), T ( jθ ) and Q( jθ ) be defined as in (7), (13) and (14), respectively.
Then, for any f0 ∈ F(ρn),

E f0(T ( jθ )+ Q( jθ )) ≥ 1

2
|| f0||22 − C

(
n− 4s′′

4s′′+d + n− 2s′
d

)

where s′′ = s − d/(2p′)+ d/4, s′ = s + d/2 − d/p′ and p′ = min(p, 2).

Proof of Lemma 1 Obviously,

E f0(T ( jθ )) =
2d−1∑

h=d+1

∑

j∈J −

∑

I∈J j

(w̃h
I )

2. (22)

Using Lemma 4.4 in Spokoiny (1996), one has

E f0

[
(Y h

I )
21
{
|Y h

I | > σ√
n
λ j

}
− σ 2

n
b(λ)

]
≥ 1

2
(w̃h

I )
21
{
|w̃h

I | >
σ√
n
λ j

}
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and therefore,

E f0(Q( jθ )) ≥ 1

2

2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

(w̃h
I )

21
{
|w̃h

I | ≥ σ√
n
λ j

}

≥ 1

2

⎛

⎜⎝
2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

(w̃h
I )

2

−
2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

(w̃h
I )

21
{
|w̃h

I | ≤ σ√
n
λ j

}
⎞

⎟⎠ . (23)

A straightforward multidimensional extension of (59) from Johnstone and Silverman
(2005) implies that, for any f0 ∈ Bs

p,q(M),

∑

I∈J j

|w̃h
I |p′ ≤ C2− js′ p′

for all j ∈ J n .

Thus, similar to Spokoiny (1996), using the definition (12) for jθ , one has

2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

(w̃h
I )

21
{
|w̃h

I | ≤ σ√
n
λ j

}
≤

2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

|w̃h
I |p′

×
(
σ√
n
λ j

)2−p′

1
{
|w̃h

I | ≤ σ√
n
λ j

}

≤ n−(1−p′/2)
2d−1∑

h=d+1

∑

j∈J +

λ
2−p′
j

∑

I∈J j

|w̃h
I |p′

≤ Cn−(1−p′/2)2− jθ s′ p′ = Cn− 4s′′
4s′′+s . (24)

Note that

2d−1∑

h=d+1

∑

j∈J n

∑

I∈J j

(w̃h
I )

2 ≥
2d−1∑

h=d+1

∑

j∈J n

∑

I∈J j

(wh
I )

2

−1

2

2d−1∑

h=d+1

∑

j∈J n

∑

I∈J j

(w̃h
I − wh

I )
2, (25)

where the d-dimensional extension (adapted to periodic boundary conditions) of (70)
of Johnstone and Silverman (2005) implies, in particular, that the second term in the
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right-hand side of (25) is O(n−2s′/d). Furthermore, from (11) and the fact that lr norms
decrease as r increases, it follows that

2d−1∑

h=d+1

∞∑

j= jn

∑

I∈J j

(wh
I )

2 ≤
2d−1∑

h=d+1

∞∑

j= jn

⎛

⎜⎝
∑

I∈J j

|wh
I |p′

⎞

⎟⎠

2/p′

≤ Cn− 2s′
d . (26)

Hence, combining (22)–(26), we get

E f0(T ( jθ )+ Q( jθ )) ≥ 1

2

⎛

⎜⎝|| f0||22 −
2d−1∑

h=d+1

∞∑

j= jn

∑

I∈J j

(wh
I )

2

−
2d−1∑

h=d+1

∑

j∈J −

∑

I∈J j

(w̃h
I − wh

I )
2

⎞

⎟⎠

−1

2

2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

(w̃h
I )

21
{
|w̃h

I | ≤ σ√
n
λ j

}

≥ 1

2
|| f0||22 − C

(
n− 4s′′

4s′′+d + n− 2s′
d

)
.

This completes the proof of Lemma 1. 
�

Lemma 2 Let F(ρn), T ( jθ ) and Q( jθ ) be defined as in (7), (13) and (14), respectively.
Then, for any f0 ∈ F(ρn),

V f0(T ( jθ )+ Q( jθ )) ≤ C

(
n−1|| f0||22 + n− 2s′

d + n− 8s′′
4s′′+d

)
,

where s′′ = s − d/(2p′)+ d/4, s′ = s + d/2 − d/p′ and p′ = min(p, 2).

Proof of Lemma 2 From the well-known properties of the non-centralχ2-distribution,
one has

V f0(T ( jθ ) = 2σ 4n−22 jθd + 4σ 2n−1
2d−1∑

h=d+1

∑

j∈J−

∑

I∈J j

(w̃h
I )

2, (27)

where using the definition (12) for jθ one can easily verify that the first term in the
right-hand side of (27) is O(n−8s′′/(4s′′+d)).
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Consider now V f (Q( jθ )). Exploiting Lemma 4.5 in Spokoiny (1996), we get

V f

(
(Y h

I )
21
{
|Y h

I | > σ√
n
λ j

})
≤ 4σ 2n−1(w̃h

I )
2
I + 2n−2σ 41

{
|w̃h

I | >
σ√
n
λ j/2

}

+σ 4n−2λ4
j e

−λ2
j /8. (28)

A straightforward calculus now yields

2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

1
{
|w̃h

I | >
σ√
n

λ j

2

}
≤

2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

(
σ√
n

λ j

2

)−p′

|w̃h
I |p′

≤ C n p′/22− jθ s′ p′ = C n− 8s′′+d
4s′′+d . (29)

Furthermore, for the thresholds λ j defined in (15), we have

σ 4n−2
2d−1∑

h=d+1

∑

j∈J +

∑

I∈J j

λ4
j e

−λ2
j /8 ≤ Cn−22 jθd = Cn− 8s′′

4s′′+d . (30)

Combining (28), (29) and (30), we obtain the following upper bound on V f0(Q( jθ ))

V f0(Q( jθ )) ≤ C

⎛

⎜⎝n−1
2d−1∑

h=d+1

∑

j∈J+

∑

I∈J j

(w̃h
I )

2 + n− 8s′′
4s′′+d

⎞

⎟⎠ . (31)

By combining (27) and (31), exploiting again the d-dimensional extension (adapted to
periodic boundary conditions) of (70) of Johnstone and Silverman (2005), and noting
that

2d−1∑

h=d+1

∑

j∈Jn

∑

I∈J j

(w̃h
I )

2 ≤ 2

⎛

⎜⎝
2d−1∑

h=d+1

∑

j∈Jn

∑

I∈J j

(wh
I )

2 +
2d−1∑

h=d+1

∑

j∈Jn

∑

I∈J j

(w̃h
I − wh

I )
2

⎞

⎟⎠

≤ 2|| f0||2 + Cn− 2s′
d ,

we easily get

V f0(T ( jθ )+ Q( jθ )) ≤ C

(
n−1|| f0||22 + n− 2s′

d + n− 8s′′
4s′′+d

)
.

This completes the proof of Lemma 2. 
�
We are now in the position to prove the main Theorems 2 and 3.
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Proof of Theorem 2 The statistics T ( jθ ) and Q( jθ ) are the sums of respectively jθ
and jn − jθ independent, squared integrable, random variables that under the null
hypothesis have zero means and variances V 2

0 ( jθ ) and W 2
0 ( jθ ). By the central limit

theorem, the resulting standardized test statistic in (16) as n → ∞ is then asymp-
totically standard normal and the significance level of φ∗

n is therefore asymptotically
α.

Consider now the Type II error of the test. It is straightforward to see that, for any
specific f0 ∈ F(ρn), asymptotically one has

P f0(φ
∗
n =0)=�

⎛

⎝
√

V 2
0 ( jθ )+ W 2

0 ( jθ )

V f0(T ( jθ )+Q( jθ ))
z1−α− E f0(T ( jθ )+Q( jθ ))√

V f0(T ( jθ ))+ Q( jθ ))

⎞

⎠+ on(1).

Since the variances ratio (V 2
0 ( jθ ) + W 2

0 ( jθ ))/(V f0(T ( jθ ) + Q( jθ )) is evidently
bounded above by one, the asymptotic behavior of P f0(φ

∗
n = 0) depends only on

the ratio E f0(T ( jθ )+ Q( jθ ))/
√

V f0(T ( jθ )+ Q( jθ )).

Recall that || f0||2 ≥ ρn for all f0 ∈ F(ρn). Substituting ρn = n−2s′′/(4s′′+d),
Lemmas 1 and 2 imply therefore that, for sufficiently large n, for any given β, there
exists a constant cβ such that

inf
f0∈F(cβρn)

E f0(T ( jθ )+ Q( jθ ))√
V f0(T ( jθ )+ Q( jθ ))

> c̃β,

where c̃β > 0 satisfies �(z1−α − c̃β) = β and, hence, c̃β = z1−α + z1−β . Thus,

β(φ∗
n , cβρn)) ≤ β + on(1),

showing that the test φ∗
n achieves the lower bound (8) for the minimax rate and it is,

therefore, rate-optimal. This completes the proof of Theorem 2. 
�

Proof of Theorem 3

Under the null hypothesis, {(T ( jθ )+Q( jθ ))/
√

V 2
0 ( jθ )+ W 2

0 ( jθ ), jmin ≤ jθ ≤ jmax}
is a sequence of O(ln n)weakly dependent, asymptotically N (0, 1) random variables.
Applying the well-known extreme value results for asymptotically N (0, 1) random
variables (see, e.g., Leadbetter et al. 1986, Chap. 4), one has

α(φa
n ) = P f0≡0

⎧
⎨

⎩ max
jmin≤ jθ≤ jmax

T ( j)+ Q( j)√
V 2

0 ( j)+ W 2
0 ( j)

>
√

2 ln ln n

⎫
⎬

⎭→ 0 as n → ∞.

Choose now any set of parameters θ = (s, p, q,M) ∈ T and define

j∗θ = 2

4s′′ + d
log2

(
n(ln ln n)−1/p′)

.
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For any f0 from the alternative set, we then have

P f0(φ
a
n = 0) ≤ P f0

⎛

⎝ T ( j∗θ )+ Q( j∗θ )√
V 2

0 ( j∗θ )+ W 2
0 ( j∗θ )

≤ √
2 ln ln n

⎞

⎠

≤ �

(√
2 ln ln n − E f0(T ( j∗θ )+ Q( j∗θ ))√

V f0(T ( j∗θ )+ Q( j∗θ ))

)
+ on(1). (32)

Repeating the arguments in the proof of Theorem 2, and substituting j∗θ and ρn =
n− 2s′′

4s′′+d (ln ln n)
s′

4s′′+d in (32), straightforward calculus imply that it is always possible
to find a constant c such that, for any f0 ∈ F(cρn),

E f0(T ( j∗θ )+ Q( j∗θ ))√
V f0(T ( j∗θ )+ Q( j∗θ ))

>
√

2 ln ln n.

Hence,

β(φa
n , cρn) = sup

f0∈F(cρn)

Pf0(φ
a
n = 0) → 0, as n → ∞.

This completes the proof of Theorem 3. 
�
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