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A b s t r a c t .  We adop t  the  Bayesian pa rad igm and discuss cer ta in  p roper t i e s  of pos- 
te r ior  median  es t imators  of poss ibly  sparse  sequences. The  pr ior  d i s t r ibu t ion  con- 
s idered is a mix ture  of an a tom of p robab i l i ty  at  zero and a symmet r i c  un imoda l  
d i s t r ibu t ion ,  and the  noise d i s t r ibu t ion  is taken  as ano ther  symmet r i c  un imoda l  dis- 
t r ibu t ion .  We derive an explici t  form of the  corresponding pos ter ior  med ian  and show 
t h a t  it  is an an t i symmet r i c  function and,  under  some condi t ions ,  a shr inkage and a 
th reshold ing  rule. Fu r the rmore  we show tha t ,  as long as the  ta i ls  of the  nonzero pa r t  
of the  pr ior  d i s t r ibu t ion  are heavier  t han  the tai ls  of the  noise d i s t r ibu t ion ,  the  pos- 
te r ior  median,  under  some const ra in ts  on the  involved paramete rs ,  has the  bounded  
shrinkage proper ty ,  ex tending  thus  recent  resul ts  to  larger  families of pr ior  and  noise 
d is t r ibut ions .  Expressions  of pos ter ior  d i s t r ibu t ions  and  pos te r ior  medians  in par t ic-  
u lar  cases of interest  are obta ined .  The  a sympto t e s  of the  der ived pos te r ior  medians,  
which provide valuable  informat ion of how the cor responding  e s t ima to r s  t r ea t  large 
coefficients, are also given. These resul ts  could be pa r t i cu la r ly  useful for s tudy ing  
frequent is t  op t ima l i ty  proper t ies  and  developing s ta t i s t i ca l  techniques of the  result-  
ing pos ter ior  median  es t ima tors  of poss ibly  sparse  sequences for a wider  set of pr ior  
and  noise d is t r ibut ions .  
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i .  Introduction 

Suppose that y = (Yl, Y2,... , Yn)' are observations satisfying 

(1.1) Y i = 0 i + ~ i ,  i - - 1 , 2 , . . . , n ,  

where _0 = (81,~2,.. .  ,0n)' is the unknown vector of means and ~i (i = 1 , 2 , . . . , n )  
is a sequence of independent and identically distributed random variables representing 
random noise. Clearly, in estimation problems, without some knowledge of the mean 
vector 0 it will not be possible to estimate it very effectively. Motivated by practical 
applications, in what follows, we consider the advantage that  may be taken of possible 
sparsity in the sequence. For example, in astronomical and other imaging processing 
contexts, the Yi (i = 1, 2 , . . .  , n) may be noisy observations of the pixels of an image, 
where it is known that a large number of the pixels may be zero. In nonparametric 
regression using wavelets, the true wavelet coefficients at each level form a possibly 
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sparse sequence, and the discrete wavelet transform yields a sequence of raw coefficients, 
which are observations of those coefficients subject to error. 

An empirical Bayes approach to the estimation of possibly sparse sequences observed 
in Gaussian white noise was recently investigated by Johnstone and Silverman (2004). 
The prior considered was a mixture of an atom of probability at zero and a heavy-tailed 
density (in particular, a standard Laplace density or a quasi-Cauchy density), with the 
mixing weight chosen by marginal maximum likelihood. Using the posterior median 
(the Bayes estimator under the LLloss function) and deriving probability bounds on the 
threshold chosen by the marginal maximum likelihood approach led to overall bounds 
on the risk of the method over the class of signal sequences of length n with normalized 
/p-norm bounded by ~, for ~? > 0 and p E (0, 2]; estimation error was measured by mean 
q-th-loss, for q E (0, 2]. Johnstone and Silverman (2004) showed that for all the classes 
considered and for all q E (0, 2], this method achieves the frequentist optimal estimation 
rate when ~ = ~n ~ 0 and n ---* cx~ at various rates, and in this sense the method adapts 
automatically to the sparseness or otherwise of the underlying signal. In addition, the 
risk is uniformly bounded over all signals and the same results hold if the posterior mean 
(the Bayes estimator under the L2-1oss function) is used as an estimator, provided that 
q E (1, 2]. Frequentist optimality results of Bayesian estimators in the wavelet regression 
context have also been considered by Johnstone and Silverman (2002), Pensky (2003) 
and Abramovich et al. (2004). 

In order to study the robustness of their results, Johnstone and Silverman (2004) 
relaxed the assumption of Gaussian errors in the sequence space model by assuming that 
the noise coefficients are independent and identically distributed from a symmetric Polya 
frequency PF3 density. The tails of such a density cannot be heavier than exponential 
and examples of such densities include the Gaussian density, the Laplace density and 
the logistic density. It has been indicated that,  under some conditions on the nonzero 
part of the prior and on the noise distribution, one may expect the qualitative features 
of the frequentist optimality results obtained by Johnstone and Silverman (2004) to 
remain true. We point out that  the posterior mean, for the prior model considered 
by Johnstone and Silverman (2004), fails to have the thresholding property and hence 
produces estimates in which, essentially, all the coefficients are nonzero. On the other 
hand, the posterior median, in certain cases, is of thresholding type which is, in many 
cases, considered to be a very useful property (e.g., when good compression rates of 
signals under s tudy are sought). 

In this paper, we try to shed some more light on the estimation problem of possibly 
sparse sequences. In particular, we adopt the Bayesian paradigm and s tudy the posterior 
median. In Section 2, we consider a more flexible prior distribution that is a mixture of an 
atom of probability at zero and a symmetric unimodal distribution, and we take the noise 
distribution as another symmetric unimodal distribution. First, we derive an explicit 

fo rm of the corresponding posterior median. Then, we show that the posterior median is 
an antisymmetric function and, under some conditions, a shrinkage and a thresholding 
rule. Furthermore, we show that,  as long as the tails of the nonzero part  of the prior 
distribution are heavier than the tails of the noise distribution, the posterior median, 
under some constraints on the involved parameters, has the bounded shrinkage property, 
extending thus a recent result of Johnstone and Silverman (2004) to larger families of 
prior and noise distributions. In Section 3, expressions of posterior distributions and 
posterior medians in particular cases of interest are obtained. The asymptotes of the 
derived posterior medians, which provide valuable information of how the corresponding 
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estimators treat large coefficients, are also given. Concluding remarks are provided in 
Section 4. Finally, in order to improve the readability, all proofs are deferred to Section 5. 

2. A Bayesian formalism 

2.1 The prior model 
Since the errors ~ (i = 1 ,2 , . . .  ,n) are assumed to be independent and identi- 

cally distributed random variables, we concentrate throughout the paper on the one- 
dimensional version of the abstract sequence model (1.1), which we call the one-dimen- 
sional observation model, i.e., 

(2.1) y = 0 + ~, 

where ~ is a random variable (representing random noise) with a symmetric unimodal 
probability density function ~(x) on R = ( -c~,  +cx~). In the hope of adapting between 
sparse and dense sequences, we consider the following prior model on 0 

(2.2) 0 ~ (1 - p)~o(x) + ph(x), 

where p C [0, 1], ~o(X) is an atom of probability at zero, and h(x) is a symmetric unimodal 
probability density function on lt~. We also assume that  both h(x) and ~(x) are positive 
for all x E 1~ and are finite at zero. 

According to the prior model (2.2), 0 is either zero with probability (1 - p) or with 
a probability p is distributed with the probability density function h(x); the proportion 
p indicates whether a value is small or large and can be used to 'control' the trade- 
off between sparse and dense sequences. We have considered the probability density 
functions h(x) and ~(x) to never vanish on R. Narrowing the support of h(x) would 
imply that  we ignored large values which, in some contexts, is inappropriate; for example 
in the wavelet context this means we ignore large wavelet coefficients which represent 
important characteristics of the (possibly) inhomogeneous signal of interest. Similarly, 
narrowing the support of ~(x) means that  we exclude noise distributions with heavy 
tails, like Laplace or Cauchy distributions. Finally, we assume that  both h(x) and 
~(x) are finite at zero for slightly different reasons. For h(x), we assume that  all zero 
mass is accounted for in the other part of the mixture otherwise the mixture would 
not be identifiable, whereas in ~(x) we assume that  there is no zero mass to exclude 
the 'pathological' case of observing data without errors. Note also that  due to the 
unimodality assumption, both h(x) and ~(x) cannot have atom masses at any other 
points. 

The Bayes model (2.1)-(2.2) can be seen as generalization of the sequence model 
studied recently by Johnstone and Silverman (2004), where h(x) is considered to be a 
standard Laplace density or a quasi-Cauchy density while ~(x) is chosen to be a Gaussian 
density or a symmetric Polya frequency PF3 density. Versions of the one-dimensional 
observation model (2.1) in the wavelet domain, for specific choices of the probability 
density functions h(x) and ~(x), have also been considered by Abramovich et al. (1998), 
Clyde et aI. (1998), Antoniadis et al. (2002), Johnstone and Silverman (2002), Averkamp 
and Houd% (2003) and Pensky (2003), in order to study wavelet shrinkage and wavelet 
thresholding in nonparametric regression for both Gaussian and non-Gaussian errors. 
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2.2 The posterior distribution 
Combining the one-dimensional observation model (2.1) with the prior model (2.2), 

we are able to find the posterior distribution, i.e., the distribution of 0 given the observed 
value y. We introduce the following auxiliary functions which we shall use for describing 
the posterior distribution and the posterior median, 

y(y) = ~ ~(y - u)h(u)du, 

H ( O I  y )  - - 

We shall r e g a r d / t ( .  I Y) as a family of functions indexed by y. Straightforward calcula- 
tions lead to the following proposition. 

PROPOSITION 2.1. Under the one-dimensional observation model (2.1) and the 
prior model (2.2), the cumulative distribution function of the posterior distribution is 
given by 

w(y) 1 - 
(2.3) F(O]y)  - 1 +w~y ) + 1 +w(y) H(Oly)' 

where w(y) - (1-p)~(y) is the posterior odds ratio for the component at zero. pn(u) 

Note that  the posterior distribution (2.3) is of the same form as the prior, i.e., it is a 
mixture of a probability mass at zero and some other distribution/~r(0 ] y) which though 
ceases to be symmetric  for y # 0. The proport ion of nonzero 0's has also changed from p 
to 1/(1 + w(y)); it obviously depends on the parameter  p and on the probability density 
functions ~(x) and h(x). 

2.3 The posterior median 
Since the posterior median can be used as a point estimate of 0, it is important  

to know its form, for both  theoretical and practical reasons. The following proposition 
gives an explicit form for the median of the posterior distribution (2.3) that  we will 
subsequently use to derive some useful properties. The following assumption is needed. 

(A1) For each y, the function [ I ( O l y  ) is invertible. 

PROPOSITION 2.2. Assume that assumption (A1) holds. Then, under the one- 
dimensional observation model (2.1) and the prior model (2.2), the median of the poste- 
rior distribution (2.3) is given by 

(2.4) m e ( y ) =  max{0, signHT(y)l - 1]} sign(y)/~ -1 ( 1 - m i n { 1 , w ( y ) }  ) 
2 lyl  , 

2/~(Oly)-1 where sign(.) is the signum function and 7(Y) = ~(y) 

Remark 2.1. (i) Assumption (A1) can be relaxed by using the generalized inverse 
function / t - ( z  I Y) = inf{0 : /=/(0 I Y) -> z} since /~(0 I Y) is an increasing, right- 
continuous function. 
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(ii) If 17(Y)I < 1 for all y E R, the posterior median is identically zero which is the 
case, in particular, if the posterior odds ratio w(y) > 1 for all y �9 N. 

We now state a proposition that  will help us to show that the posterior median (2.4), 
under some constraints on the involved parameters, has the bounded shrinkage property 
(see Definition 2.1 below). Before proceeding, it is convenient to set up some notation. 
We write gl(x) • g2(x) to denote 0 < l iminf(gl(x)/g2(x))  < l imsup(gl(x)/g2(x))  < 
+oc, as x --* oc. Throughout the paper, x --* oo means both x ~ - o c  and x --* +co. 

PROPOSITION 2.3. Suppose that h(x)/!Z(x) ---* +oc, as x ~ oc, i.e., the tail of 
h(x) is heavier than the tail of ~(x).  Suppose also that there exists a probability density 
function f ( x )  satisfying the following conditions 

(L1) f ( x )  is symmetric, unimodal, positive for all x E IR and finite at zero. 
(L2) 3 M > 0 such that for each x > M, h ( x ) / f ( x )  is increasing. 
(L3) ~ functions Ql(u),Q2(u) > 0 defined on [0,+oo) such that, for each x > M,  

and 

f ( x  +u)  f ( x -  u) 
f ( x )  ~ Q l ( U )  and f ( x )  ~ Q 2 ( u ) ,  for u > O, 

fo +~ Qi(u)~(u)du < +oc, for i = 1,2. 

Then, ~(x) x h(x). 

Proposition 2.3 shows that the convolution ~(x) behaves asymptotically as h(x), 
the density with the heavier tail between the two convoIving densities. It is actually a 
generalization of the first part of Lemma 1 in Johnstone and Silverman (2004), since this 
lemma does not allow the tails of ~(x) to be heavier than exponential, and therefore 
important heavy-tailed distributions, like those with polynomial decay (e.g. t distri- 
butions), are excluded. It is clearly illustrated in the following corollary. We denote 
by ep~,~ (x) the probability density function of an Exponential-Power distribution with 
parameters ~,~- > 0, i.e., ep~,~(x) -- 2r r~ /a )exp{- ( Jx [ /T)~} ,  for x �9 N, and by t~ 
the probability density function of a t distribution with v >_ 1 degrees of freedom, i.e., 
t , (x )  = r((n+l)/2) (1 + x2/v) -(~+1)/2 for x �9 N, where F(a) = f o  xa - l e -Xdx '  a > O, (~)1/2r(~/2) 
is the Gamma function. (Recall that tl is the standard Cauchy distribution.) 

COROLLARY 2.1. Suppose that h(x) and ~(x) are such that 
(1) h(x) = epa,r(x) and ~(x) = epz,~(x) with c~ < 13 or with (~ = 13 and 7- > a. 

Then, rl(x ) • h(x) if and only if ~ <_ 1. 
(2) h(x) = t~ l(x) and ~(x) = t ,  2(x) withy2 > vl > 1. Then, rl(x ) • h(x) if and 

only if v2 - vl > 1. 

Now we give some definitions, following closely those given in Johnstone and 
Silverman (2004), also leading to the main properties of the posterior median. 

DEFINITION 2.1. Let 5(x,t)  be a function defined on R x [0,+oo) with values in 
R. Then 
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(D1) 5(x, t) is antisymmetric in x if, for each t > 0, 

5 ( - x , t )  = -5(x ,  t) for all x > 0. 

(D2) 5(x, t) is a shrinkage rule if and only if 5(x, t) is antisymmetric in x and 
increasing on R for each t >__ 0, and 

O < 5 ( x , t ) < _ x  for all x > 0 .  

(D3) The shrinkage rule 5(x, t) is a thresholding rule with threshold t > 0 if and 
only if 

5 ( x , t ) = O  for all [ x l < t .  

(D4) The shrinkage rule 5(x, t) has the bounded shrinkage property (relative to the 
threshold t > 0) if, for some constant b, 

Ix-5(x,t)l<t+b foral l  x and t. 

While (D1), (D2) and (D3) in Definition 2.1 are well understood, let us spend a 
minute to explain the meaning of (D4), the bounded shrinkage property. It essentially 
means that rare large observations are more or less reliably assigned to sparse signals 
rather than noise in the Bayesian model (2.1)-(2.2) considered above. Therefore an 
estimation rule (shrinkage or thresholding) satisfying this property ensures that if 0 is 
large then y is not shrunk severely in the estimation of 0. Some examples demonstrating 
this behavior will be given in Section 3. 

Now we are in position to conclude this section by stating some important properties 
for the posterior median. The following assumption is needed for the posterior median 
to be an increasing function. 

(A2) The function Q(y) = f+~[~(y - x) - ~(y + x)]h(x)dx is increasing for all 
y > 0 .  

THEOREM 2.1. Suppose that assumption (A1) holds. Then, under the one-dimen- 
sional observation model (2.1) and the prior model (2.2), posterior median (2.4) has the 
following properties 

(P1) it is an antisymmetric function; 
(P2) it is a shrinkage ~tle, provided that assumption (A2) holds; 
(P3) it is a thresholding rule, provided that assumption (A2) holds. Furthermore, 

it can be expressed as 

(2.5) 0, if  lyl ~_ A, 
mo(y) = s i g n ( y ) / ~ r - l ( ~  l Y), if  lYl > A, 

where the threshold A > 0 is defined by the equation 7(A) = -1;  
(P4) it has the bounded shrinkage property, provided that h (x ) /~(x)  ~ + ~ ,  as 

x --. oc, and that the assumption (L3) in Proposition 2.3 holds with f ( x )  = h(x) for  all 
x E ]~. 
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From the proof of the theorem it follows that very basic properties of the densities 
~(x) and h(x) ,  such as symmetry, continuity and support on 1~, guarantee some impor- 
tant properties of the posterior median, in particular, antisymmetry, having a symmetric 
neighborhood of zero where the median is zero, having values between 0 and the observed 
value y. For other properties of the posterior median, i.e., monotonicity and bounded 
shrinkage property, further assumptions on the densities ~(x) and h(x)  are required. 

Remark  2.2. (i) Assumption (A1) can be relaxed by using the generalized inverse 
function /~ - (z  I Y) -- inf{8 : /~(8 I Y) ~ z} since /~(8 I Y) is an increasing, right- 
continuous function. 

(ii) It is not difficult to check that  assumption (A2) can also be relaxed by narrowing 
the interval where the integral increases to (A, +c~), where A > 0 is the threshold. 

(iii) If, for each x > O, the function Gx(y)  = ~ (y  - x) - ~ (y  + x) is increasing for 
all y > 0, then assumption (A2) is satisfied. For certain distributions, this condition is 
easier to check than assumption (A2). 

Condition Off) (and thus assumption (A2)) in Remark 2.2 holds for ~(x) being a 
Gaussian density but not for Laplace or t densities. It immediately implies that the 
posterior median is a thresholding rule in the cases where ~(x) is a Gaussian density 
and h(x)  is a Gaussian density or a Laplace density. In the considered cases with ~(x) 
being a Laplace density, it implies directly from the formula for the posterior median 
that it increases (and thus is a shrinkage rule) and it is a thresholding rule. In case of 
combinations of t distributions, V(Y) is not monotonic in a neighborhood of zero, and 
thus several areas where the posterior median is zero may exist. Nevertheless, in the 
case where ~(x) = t3(x) and h(x)  -- t l ( x ) ,  for certain values of the mixing parameter 
p, assumption (A2) holds for lYl > A, implying that the corresponding posterior median 
is a shrinkage and a thresholding rule. In the case where ~(x) -- 1 x ~t l (~) ,  a > 0, and 
h(x)  = 1 x u 7- > 0, the posterior median increases for certain values of the mixing 
parameter p and thus it is a shrinkage and a thresholding rule. More details on these 
and on the bounded shrinkage property will be given in Section 3 below. 

3. Some special cases of interest 

In this section, we derive expressions of posterior distributions and posterior medi- 
ans in some particular cases of interest. We also study the asymptotes of the derived 
posterior medians, which provide valuable information of how the corresponding esti- 
mators treat large coefficients. The cases we consider, in the form of "nonzero part  of 
the prior distribution"-"noise distribution", are: Gaussian-Gaussian, Laplace-Gaussian, 
Gaussian-Laplace, Laplace-Laplace, t l-t3 and (scaled) t l - t l .  

Before proceeding, it is convenient to set up some further notation. We use r and 
O(x) for the probability density and cumulative distribution functions, respectively, of a 
standard Gaussian random variable, and r (x) denotes the probability density function 
of a Gaussian random variable with mean zero and variance a2. We also denote by 
/p(x) the probability density function of a Laplace distribution with scale parameter 
0 < p < c~, i.e., lp(x) --- ~2 exp {-plxl}  for x e ~.  (Note that  lp(x) = e p l , 1 / p ( X ) . )  

3.1 The Gaussian-Gaussian case 
This case has been discussed, in the wavelet regression context, by Abramovich et 

al. (1998) which we quote here for completeness. However, we note that (3.3) and (3.4) 
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given below are explicitly appeared for first time in this paper. 

THEOREM 3.1. Consider the one-dimensional observation model (2.1) with ~(x) = 
r and take the prior model (2.2) with h(x) = r Then, the following hold 

(1) The cumulative distribution function of the posterior distribution is given by 

(3.1)  

where 

~(y) 1 
F(O { Y) - 1 + w(y) I[o,+or + - -  (I) 1 + ~(y) V ;  

- -  exp - . 

p a a 2 ( a  2 + T 2) 

(2) The median of the posterior distribution (3.1) is given by 

= ~ o, f f  {yl < :~, 
(3.2) ?'~0 (Y) �9 r 2 crT . ~ - l { 1 - m i n { 1 , w ( Y ) }  

slgn(y)[~-'z-4-~[Y{ + ,/-gz-4-~ , 2 )], i f  {y{ > )~, 

where the threshold )~ > 0 is defined as a solution of the equation 

p a ~-A - 1 = exp - . (3.3) 1 p ~  2q~ a x / ~ + a  2 a2(a 2 + T  2) 2 

(3) The asymptotes of the posterior median (3.2), as y ~ oc, are given by 

[ T2 a "  N- T "  ( l - p ) T  { -2Pr ~-) - a 2 (  a2T2+ T 2 ) Y2 } (1 + O(1))] " 2  (3.4) me(y) = sign(y) ---5---:--~{Y[ + exp 

Since both densities ~a(x) and h(x) are continuous, symmetric and defined on I~, 
the posterior median (3.2) is antisymmetric. Since also assumption (A2) is satisfied for 
any h(x) given that ~(x) is Gaussian (due to Remark 2.2(iii)), the posterior median is 
a thresholding rule with threshold parameter A satisfying (3.3)�9 However, according to 
Corollary 2.1, it does not possess the bounded shrinkage property. Furthermore, as y 

2 
cr it tends to a linear asymptote, ~ lYl, with an exponential rate, e -r2/~2(a2+~2)y~/2. 
Figure 1 plots the posterior median (3.2) and its asymptote (3.4) for a particular choice 
of parameters. 

3.2 The Laplace-Gaussian case 
In order to describe this case better we need to define a modified Gaussian distri- 

bution. We consider the positive and negative truncated Gaussian distributions 

TG_(u ; z )  - O(u + z) 
r  ' u < 0, 

T C + ( u ;  z) = 1 - T G _ ( - u ;  z) = r  - z) - r  
r  ' ~ > 0. 

Then, we glue them together into the Combined Truncated Gaussian (CTG) distribution, 

(3.5) CTG(u  I P0,Pl) = (1 - (~)TG_(u;po) + aTG+(u;p l )  
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-10 -5 0 5 10 

Fig. 1. Pos t e r io r  m ed i an  for G a u s s i a n - G a u s s i a n  d i s t r i b u t i o n s  w i t h  p a r a m e t e r s  ~- -- 2, a = 1, 

p = 0.4. Line y = x is p lo t ted  as a do t t ed  line, and  the  a s y m p t o t e  is p lo t t ed  as  a da she d  line. 

(3.6) 

where 

with parameters p0, pl, while the mixing parameter a = (~(P0,Pl) c [0, 1] is chosen 
such that  the derived probability density function is continuous. It is not difficult to 
check that the tails of the CTG distribution decrease faster or slower than the tail of the 
standard Gaussian distribution depending on the sign of the parameters P0 and Pl. We 
are now in the position to state the following result. 

THEOREM 3.2. Consider the one-dimensional observation model (2.1) with ~(x)  -- 
r and take the prior model (2.2) with h(x) = la(x). Then, the following hold 

(1) The cumulative distribution function of the posterior distribution is given by 

w(y) I[0,+oo)(O) + 1 F ( O  I Y) - 1 + w ( y )  1 + w(y--) C T G ( O / o  I -y/,, - aa ,  y / o  - a a ) ,  

2(1 - p ) r  
~(Y) = a ~ o ~ '  

e -~  - a~) 
~(y)  = ~,(y) ' 

u(y) = eaY@(-y /a  - aa) + e-aV@(y/a - aa). 

(2) The median of the posterior distribution (3.6) is given by 

(3.7) too(y) = I 
O, 
sign(y)[[yl- aa u - ~7c~ - 1  ( ( l +w(y) )u(y)e~lvl ) ], ( 2 

where the threshold A > 0 is defined as a solution of the equation 

(3.8) 

(3) 

(3.9) 

i f  lyl < ),, 
i f  lyl > ,x, 

O(A/a - ao-) O ( - A l a  - a(x) 2(1 - p) 

r  - ao-) r  - ao) a~,p 

The asymptotes of the posterior median (3.7), as y -~ co, are given by 

[ { ,~o(y) - -  sign(y) lyl - a ~  - - -  exp 
ap - 2 J  
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Fig.  2. P o s t e r i o r  m e d i a n  for L a p l a c e - G a u s s i a n  d i s t r i b u t i o n s  w i t h  p a r a m e t e r s  a = 2, a ---- 1, 
p = 0.4. L ine  y = x is p l o t t e d  as  a d o t t e d  line, a n d  t h e  a s y m p t o t e s  a re  p l o t t e d  as  d a s h e d  lines.  

Since both densities ~(x) and h(x) are continuous, symmetr ic  and defined on JR, 
the posterior median is ant isymmetric .  Also, it is easy to see from the formula for the 
posterior median (3.7) tha t  it increases as a function of y, and thus  it is a thresholding rule 
wi th  threshold parameter  ,~ defined by (3.8). According to Corollary 2.1 and Theorem 
2.1, the posterior median possesses the bounded shrinkage property. Furthermore,  as 
y ~ oc, it tends to a linear asymptote ,  sign(y)[ly I - aa2], with  an exponential  rate,  
e x p { - ( l y  I - aa2)2/2a2}. Figure 2 plots the posterior median (3.7) and its asymptotes  
(3.9) for a part icular  case. We point out tha t  the special case a = a = 1 has also been 
discussed in Johnstone and Silverman (2004). 

3.3 The Gaussian-Laplace case 
To describe the posterior distr ibution in this case we need to define another  modifica- 

t ion of the Gaussian distribution,  C T N ( x  I z, #, a). It is a Combined Truncated Normal 
dis tr ibut ion which is a combinat ion of Gaussian distr ibutions wi th  variance a t runcated  
at  point z to the left semiline wi th  mean #1 ( T N _ ( x  I z, #1, a))  and to the right semiline 
wi th  mean #2 (TN+(x I z, #2, a))  with mixing pa rame te r /3  ---/3(z, #1, #2, or) r [0, 1] in 
such a way tha t  the density function is continuous, i.e., 

CTN(xlz, pl,#2,a) = ~ T N _ ( x  I z , ~ t l , O - ) - ~ - ( 1  - ~ ) T g . . k ( x  ] z ,  ~ t2 ,o ' ) ;  

r  - 
T N _ ( x  I z ,# ,a )  = ~ - - p - ~  l ( - ~ , z ) ( x )  -t- l ( z ,+~) (x)  

T Y + ( x  ] z ,p ,a )  = ~( (x  - #) /a)  - ~( (z  - #)~or)l(z,+~)(x), 
l = ; u- ;) 

where 1A is the indicator function of A. The CTN dis t r ibut ion is different from the CTG 
distr ibut ion used in the Laplace-Gaussian case studied in Subsection 3.2. The CTG 
dis t r ibut ion combines the same Gaussian distr ibution t runca ted  to the left and to the 
right at different points, whereas the CTN distr ibution combines Gaussian distr ibutions 
wi th  different means t runca ted  at the same point. Now we can formulate  the main result. 



P O S T E R I O R  M E D I A N  E S T I M A T E S  OF SPARSE S E Q U E N C E S  325 

where 

THEOREM 3.3. Consider the one-dimensional observation model (2.1) with ~(x) = 
la(x) and take the prior model (2.2) with h(x) = r Then, the following hold 

(1) The cumulative distribution function of the posterior distribution is given by 

w(y). . (~) + 1 CTN(O [ y, aa 2, - a a  2, or), (3.10) F (0  I Y) 1 + w(y) I[~176176 1 + w(y) 

(1 - p)e -alyl 
= 

- a o )  
= , 

v(y) = e~YO(-y /a  - aa) + e-aYO(y/a  - aa). 

(2) The median of the posterior distribution (3.10) is given by 

0, if ly] <_ A, 
(3.11) mo(y) = sign(y)[acr 2 -1- 0"(~--1( (1-sign(y)w(y))v(y)e~lyl)], /f  ]y] > X, 

2 

where the threshold A > 0 is defined as a solution of the equation 

1 
(3.12) O()~/a - a(7) + O(-)~/a - aa)e 2~  = 2 0 ( - a a )  + - Re -(~")2/2. 

P 

The equation above has a finite solution if and only if  p > 1 
1+(2eP(aa)_ 1)e(~a)2/2 ' 

A = +oc which implies that me(y) = 0 for all y C R. 

otherwise 

1 the asymptotes of the posterior median (3.11), as (3) I f p  > l+(2qS(aa)_l)e(,~a)2/2 , 
y -~ oo, are given by 

(3.13) mo(y) = sign(y) [aa2 - a O - l  ( l + ~pPe- (a~)2 /2 )  (l + o(1))] . 

Since both  densities ~(x)  and h(x) are continuous, symmetr ic  and defined on ~ ,  
the posterior median is ant isymmetr ic .  Also, it is easy to see from the formula for the 
posterior median (3.11) tha t  it increases as a function of y, and thus it is a thresholding 

I . For rule with threshold parameter  A defined by (3.12) for p > 1+(2r 

p < 1 the posterior median is zero for all y C R. Corollary 2.1 and 
- -  l + ( 2 ~ ( a a ) _ l ) e ( , ~ a ) 2 / 2 ,  

Theorem 2.1 imply tha t  the posterior median does not possess the bounded shrinkage 
property. Moreover, as y --~ c~, the posterior median tends to a constant ,  s ign(y)[aa 2 - 

a(I)-l(  1 + 12-~e-(a~)2/2)]. Figure 3 plots the posterior median (3.11) and its asymptotes  p 
(3.13) for a particular case. 

3.4 The Laplace-Laplace case 
To describe the posterior dis t r ibut ion in this case we need to define a Truncated 

Laplace (TL) distr ibution with  parameter  )t E ]~ on the interval [a, b] with probabil i ty 
density function 

T L ( x  I )~,a,b) -- 2(L~(b) - L~(a)) e-~lz l l (a  < x < b), 
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Fig.  3. P o s t e r i o r  m e d i a n  for G a u s s i a n - L a p l a c e  d i s t r i bu t i ons  w i t h  p a r a m e t e r s  a = 2, a = 1, 
p = 0.4. Line  y = x is p l o t t e d  as  a d o t t e d  line, a n d  t h e  a s y m p t o t e s  are  p l o t t e d  as d a s h e d  lines.  

le~Xl Ix ~ ( 1 -  1 --Az~ 1 . where - o c  < a < b < +oc  and L~(x) = ~ (-~,0)~ J + ~e ) [0,+~)(x) is the 
cumulative dis tr ibut ion function of the Laplace distribution. If A < 0, bo th  end points 
a and b have to be finite. In case A = 0, this distr ibution coincides wi th  the uniform 
distr ibution on [a, b], and in case A > 0, a = 0, b = +oc  it coincides with the exponential  
distr ibution with  parameter  A. Now, given two finite parameters,  a and b, we divide the 
real line into three intervals, and glue together Truncated Laplace distr ibutions on these 
intervals, such tha t  parameters  on the infinite intervals ( ( - c~ ,  a) and (b, +c~))  are the 
same making the right and left tails of the distr ibution of the same order, i.e., 

C T L ( x  [ ,~1, ,~2, a, b) = a x T L ( x  [ A1, -c~ ,  a) + a2TL(x  I ~1, b, +c~) 

+ (1 - a l  - a2)TL(x  I A2, a, b), 

wi th  parameters  - c ~  < a < b < +cx~, ,~1 > 0,  ,~2 C ]l~, while the mixing parameters  
a l  = OL1 (A1, A2, a, b) and a2 = a2(A1, A2, a, b) 6 [0, 1] are chosen such tha t  the probabil i ty 
density function of the CTL distr ibut ion is continuous. We are now in the position to 
s tate  the following results, separat ing the cases different (v ~ #) and equal (v = it) 
parameters  of prior and noise distributions.  

THEOREM 3.4. Consider the one-dimensional observation model (2.1) with ~a(x) = 
l~(x) and take the prior model (2.2) with h(x) = l~(x). Then, providing v # it, the 
following hold 

(1) The cumulative distribution function of the posterior distribution is given by 

(3.14) 
w(y) r la~ 

F ( 0 ] y )  - l ~ ( ( y ) ~ [ ~  

1 
+ 1 + w(y) CTL(O ] ~, + #, (~, - p) sign(y), min(0, y), max(0, y)), 

where 

1 - p 1 - (p /v)  2 
- 

p 1 -  (# /v)e-(~-~) l  yI'  
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c~1 (y) - (u - it)e[" min (O,y)+u min (O,--y)] 

2(ue-,lul - #e-~lul) 

a2(Y) = (u - #)e [umin (0,y)+,min(0,-y)] 
2(ue-,lyl -/ .ze- 'Iul) 

(2) The median of the posterior distribution (3.14) is given by 

0, if Iv[ < 
(3.15) too(y) = sign(y)[ul~_ log(.+#~(.-~)l~, O-p)(~-.))], if lYl > A, u + .  -]- p v  

where the threshold A > 0 is defined by 

(3.16) A -  # ~ _  u log [max ( 0 , 1 +  (1-P)(P2-u2))].p#u 

(3) The asymptotes of the posterior median (3.15), as y -~ cxD, are given, for u < #, 
by 

(3.17) too(y) = sign(y) ]y] # - .  

+ ue-(U-~')lY'( - u) - P ) ( U 2 -  # 2 ) + p u  2 1 ) ( 1 +  0(1))] 

and, for u > #, by 

(3.18) too(y) ---- sign(y) 

1 (plu)e-("-.) lyl  ] 
+ - -  (1 + o (1 ) )  , # - u 1 - p  u 2 - p_____~2 

P u2 + 1 

u 2_ t~  2 . 
provided that p > v.+v2-.2 

Since both densities ~(x) and h(x) are continuous, symmetric and defined on •, 
the posterior median is antisymmetric. Also, it is easy to see from the formula for the 
posterior median (3.15) that it increases as a function of y, and thus it is a thresholding 

u 2 _ ~ 2  . rule with threshold parameter A defined by (3.16) for p > .u+~2_u2 For u > # and 
u 2 _ ~ 2  

P ___ . .+~2_.2,  the posterior median is zero for all y E JR. According to Corollary 2.1 
and Theorem 2.1, the posterior median (3.15) possesses the bounded shrinkage property 
only in case u < p. Furthermore, as y --~ c~, it tends to a linear asymptote, sign(y)[ly I - 

1 log(,+_~_)], with an exponential rate, e -("-~)Iyl when u < #, while it tends to a ] ~ - u  

constant, sign(y)[~ 1--~_~ log(~+~ + (1--p)(v--.))]p~ , with an exponential rate, e -(v-")lyl, when 
u 2 - i t  2 . u > p and p > ~.+.2_~2 Figure 4 plots the posterior median (3.15) and its asymptotes 

(3.17)-(3.18) for particular cases. 
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Fig.  4. Pos t e r io r  m e d i a n  for Lap lace -Lap lace  d i s t r i b u t i o n s  w i t h  p a r a m e t e r s :  ( left)  It = 1, 
v = 1.3, p = 0.4; ( r ight)  it = 1.5, v = 0.7, p = 0.1. Line  y --  x is p l o t t e d  as  a d o t t e d  line, and  
t h e  a s y m p t o t e s  are  p l o t t e d  as d a s h e d  lines. 

(3.19) 

where 

THEOREM 3.5. Consider the one-dimensional observation model (2.1) with ~(x) = 
l~(x) and take the prior model (2.2) with h(x) = l ,(x).  Then, the following hold 

(1) The cumulative distribution function of the posterior distribution is given by 

w(y) (0) + 1 CTL(~ I 2v, 0, min(0, y), max(0, y)), F(O I Y) - 1 + o~(v) It~176176 1 + ~ ( y )  

2(1 - p) 

~(Y) - p(1 + - Iv l ) '  
1 

~ i ( y )  = ~2(y)  - 2(1 + - L v i )  

(2) The median of the posterior distribution (3.19) is given by 

0, i /  Ivl _< ~, 
( 3 . 2 0 )  me(y) = sign(y)[J_~A_ 1 / / ] ,  / f  lYl :> /~, 

where the threshold )~ > 0 is defined by 

(3.21) ~ _ 2(1 - p) 
up 

Since both densities ~(x) and h(x) are continuous, symmetric  and defined on ~,  
the posterior median is antisymmetric.  Also, it is easy to see from the formula for the 
posterior median (3.20) that  it increases as a function of y, and thus it is a thresholding 
rule with threshold parameter  A defined by (3.21). The formula for the posterior median 
also implies that  the median does not possess the bounded shrinkage property. Figure 5 
plots the posterior median (3.20) for a particular case. 
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Fig.  5. Pos t e r i o r  m e d i a n  for Lap l ace -Lap l ace  d i s t r i b u t i o n s  w i t h  p a r a m e t e r s  u = tt = 2, p = 0.4. 
Line  y -- x is p l o t t e d  as a d o t t e d  line. 

3.5 The tl-t3 case 

THEOREM 3.6. Consider the one-dimensional observation model (2.1) with ~(x) = 
t3(x) and take the prior model (2.2) with h(x) = tl(x). Then, the following hold 

(1) The cumulative distribution function of the posterior distribution is given by 

w(y) r I~ 1 ~ 
(3.22) F(t? I Y) - 1 ~w(y)~[o,+~)(~) + 1 + w(y) H(O l Y)' 

where 

1 [3C(y) log (t~2+___1 ~ 
/~(0 [y) - ~(y)Tr2v/- ~ (0 - y)2 + 3] + B(y)(~ + 2 arctan(0)) 

+ x / 3 ( 2 D ( y ) + G ( Y ) ) ( 2 + a r e t a n ( ~ - ~ )  ) 

1 8 - y  ] 
+ 3F(y) 1 +  ( y -  e)2/3 + G(y) 1 +  ~ : 0)~/3 ' 

1 - p  1 ~(y)  = 
p (B(y) + v~(D(y) + G(y)/2))(1 + y2/3)2' 
2 

~(y) = - ~ ( B ( y )  + v/-3(D(y) + G(y)/2)), 

and 

B(y) = 9(y 4 + 4 ) / A ,  

c ( y )  = 12y(y 2 + 2 ) / ~ ,  

D(y) = 3(3y 4 + Sy 2 - 4)/A, 

F(y)  = 2y(y 4 + 8y 2 + 4 ) / ~ ,  
G(y)  : (y6  _1_ 6 y 4  _ 1 2 y 2  _ 8 ) / t ,  

where A = 9y s + 48y 6 + 38y 4 - 52y 2 + 48. 
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(2) For p > Po "~ 0.401, the median of the posterior distribution (3.22) is a thresh- 
olding rule, with the value of the threshold A > 0 defined as a solution of the equation 

( A )  AG(A) - 3F(~) 
(3.23) 3C(A) log(A 2 + 3) + x/-3(2D(A) + G(A)) arctan ~ + 1 + A2/3 

- p) 

p(1 +  2/3)2" 

For y > A, the posterior median, me (y), is given implicitly by the equation 

(3.24) 3C(y)log ( m ~  (me(y) - y)2 + 3 + 2B(y) arctanm0(y)  

+ v/-3(2D(y) + G(y))arctan ( me(y)  - y 

1 
+ 3F(y)  1 + (y - m~(y))2/3 

mo (y) - y 1 - p 

+ C ( y ) l +  - p ( 1 +  

(3) The asymptotes of the posterior median defined in (3.24), as y --* c<), are given 
by 

(3.25) me(y) = sign(y)(IYl_ ~_T(1 _ F 3  o(i))) . 

2H(01Y)-I determines such important properties of The behavior of function V(Y) = ~(y) 
the posterior median as its being an increasing function, being a thresholding rule, and 
the value of the threshold. It depends on the non-zero part of the prior distribution, 
on the noise distribution, and also on the proportion p of the non-zero part  in the prior 
distribution. We split function V(Y) in the product of two functions, i.e., V(Y) = _2_ - 

where ~(y) is independent of the parameter p. The latter function is uniquely defined 
by the noise distribution and the non-zero part in the prior distribution. We shall 
call function ~(y) as the characterizing function of the posterior median. Plot of the 
characterizing function for the case tl-t3 distributions is given in Fig. 6(left). 

Hence, the equation for the threshold becomes ~()~) -- - 1 - p  and we can see that  p ' 

for the prior odds ratio below 1-po ~ 0.671 (corresponding to p < P0 ~ 0.401) there are 
P0 

two solutions for this equation, and the posterior median is not an increasing function, 
as it has two intervals on (0, +c~) where it is zero. This implies that  if the proportion 
of the nonzero distribution in the mixture is too low and the tails of both distributions 
(nonzero part  of the prior and noise) are both heavy, for small observed values the 
posterior median is not as well-behaved as in the case of lighter-tailed noise distributions 
(see Subsections 3.1-3.4). Also, the tradeoff for the good asymptotic properties is that  
the model cannot allow for too much sparsity since the posterior median is well-behaved 
only for p > P0. However, for a sufficiently high prior probability of the value to be 
non-zero, the posterior median possesses the same basic properties of a posterior median 
which make it as an estimator, i.e., it is an antisymmetric function, a shrinkage rule, and 
a thresholding rule with threshold parameter A satisfying (3.23). It also possesses the 
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Fig. 6. (Left) Character izing function for t l - t 3  distr ibutions.  The dashed line corresponds 
to the critical value of the prior odds  ratio (1 - po) /Po;  (right) poster ior  median for t l - t 3  

distr ibut ions with parameter  p = 0.45. Line y = x (which is also the asympto te )  is p lot ted as 
a do t ted  line. 

bounded shrinkage property and moreover, it shrinks large observations by a very small 
3 Figure 6(right) plots the posterior median defined in (3.24) and its asymptotes value, }. 

(3.25) for a particular case. 

3.6 The (scaled) tl-tl case 

(3.26) 

where 

THEOREM 3.7. Consider the one-dimensional observation model (2.1) with ~(x) = 
1 x ; t l ( ; )  and take the prior model (2.2) with h(x) = i t  7 l(~). Then, the following hold 

(1) The cumulative distribution function of the posterior distribution is given by 

w(y) 1 /~(0 I y), F(e I y) - 1 + w(y)I[o,+,~)(e) + 1 + w(y) 

1 1 [aTC(y)log( 02+m2 ) 
-f-I(O I Y) = ~ + 2;r(B(y)T + D(y)a) (0 --y~2 ~ a2 

+ 2"rB(y) arctan (~-~ --~ ) 

+ 2aD(y) arctan ( ~ ) ]  , 

p (y2 +a2)(mB(y ) + aD(y))'  

77(y) = l (B(y)"r + D(y)a), 

and 

B(U) = (y2 + ~ _ ~ ) / A ' ,  



332 NATALIA BOCHKINA AND THEOFANIS SAPATINAS 

c(y) = 2y/z ', 
D(y) = (y2 _ T2 + O2)/A,, 

where A'  = (y2 _ 72 + 02)2 + 47_2y2. 
(2) For y > A, the median too(y) of the posterior distribution (3.26) is given im- 

plicitly by the equation 

(3.27) 2TB(y) arctan ( m ~  - y ) + 20D(y) arctan ( me~f y) ) 

( mO(y)2 + T 2 ) _  (1 - p)Tra 
+ o.TC(y)log (y _-- m----~)72 7 02 p(y2 + 02)' 

where the threshold )~ > 0 is defined as a solution of the equation 

[ p()~2 + 02) o~-C()~)log + 2TB()~) arctan = 1. (3.28) p) o ] 

The equation above has a finite solution if and only if p > ~+--~, otherwise )~ = +c~ which 
implies that ms(y) = 0 for all y c ]~. Furthermore, the posterior median increases if and 
only ira < ~- and p > ~ implying that it is, in this case, a shrinkage and a thresholding - -7 '  
rule. 

(3) The asymptotes of the posterior median defined in (3.28), as y --~ c~, are given, 
for p > 9, by 

(3.29) 

f o r p =  ~ 7, by 

(3.30) 

and, for ~ ~ < p < zT, by 

(3.31) mo(y) =sign(y)Ttan ( 2  [T 

mo(y)=sign[]Y ' -a tan(~r~-Tp)( l+o(1) )] ,  

me(y) =s ign  [tY12 327r (T--O.)(T--O. 2o-)] 3o(1) ,  

The posterior median is an antisymmetric function, and it is a shrinkage and a 
thresholding rule if and only if o < ~- a n d p  > -~ In case o < T a n d p  > -~ it also 

- -  T "  T '  

possesses the bounded shrinkage property. If p < 9, the posterior median is not an 
increasing function and thus not a thresholding rule. Furthermore, if p < ~+r,  the pos- 
terior median is identically zero. It is interesting to see that  in the Laplace-Laplace case 
(see Subsection 3.4), the bound between the posterior median being bounded shrinkage 
and asymptotic constant is the case of equal parameters # = u where the posterior me- 
dian behaves as y/2, whereas in the (scaled) tl-tl case, this bound is the case where 

- -  O" o < • and p -  7" 
In the case of equal scaling parameters, z -- a, the posterior median is not a mono- 

tonic function, as we can see in Fig. 7. For positive observed values, it decreases very 
slowly to its limit (increases for negative observed values), as does the function Q(y) 
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F i g .  7 .  Posterior median for (scaled) t l - t l  distributions with  parameters: ( l e f t )  r = 2 ,  cr = 1,  

p = 0 . 6 ;  ( c e n t e r )  ~- = 2 ,  a = 1 ,  p = 0 . 5 ;  ( r i g h t )  r = 1 ,  a = 1 ,  p = 0 , 6 .  L i n e  y - -  x is plotted as 
a dotted line, and asymptotes  are plotted as dashed lines. 
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F i g .  8 .  ( S c a l e d )  tz-tl distributions with equal scaling parameters, ~- = a = 1: ( l e f t )  function 
Q(y) from assumption (A2); (right) characterizing function. 

which, according to assumption (A2), should be increasing for the posterior median to 
increase (see Fig. 8). We also plot the characterizing function, as we did in the tl-t3 
case (see Subsection 3.5), to illustrate that the posterior median in this case changes its 
behavior from increasing to decreasing at the same points as the characterizing function. 
Furthermore, as y ---* c~, it tends to a constant, T t a n ( ~ )  and, hence, it does not 
possess the bounded shrinkage property. Figure 7 plots the posterior median defined in 
(3.28) for particular cases. 

4. Concluding remarks 

In this paper we studied the posterior median in a Bayesian framework which is 
applicable to objects which can be modelled as possibly sparse sequences. Certain prop- 
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erties of the posterior median, discussed recently in Johnstone and Silverman (2004), 
were extended to a more general framework. Specific case studies were considered which 
characterize the behavior of the posterior median and allow one to compare types of the 
asymptotic behavior and values of thresholds for different prior and noise distributions. 
It has been observed that if the tail of the noise distribution is heavier than the tail of 
the nonzero part of the prior distribution (see Subsections 3.3, 3.4, 3.6), the posterior 
median tends to a constant for large observations thus severely underestimating large 
observed values. On the other hand, as long as the tails of the nonzero part of the prior 
distribution are heavier than the tails of the noise distribution (see Subsections 3.2, 3.4, 
3.5), the posterior median, under some constraints on the involved parameters, has the 
bounded shrinkage property. 

According to the recent results of Johnstone and Silverman (2004), this latter 
property should assist us in studying frequentist optimality properties of the result- 
ing Bayesian estimates to a wider set of prior and noise distributions. One expects that, 
under some mild conditions, posterior median estimation methods obtained by certain 
combinations of prior and noise distributions will achieve the frequentist optimal esti- 
mation rate for a wide range of classes of signal sequences of length n with normalized 
/p-norm bounded by ~/, for ~/ > 0 and p E (0, 2] at various rates, simultaneously for a 
wide range of mean q-th-losses with q C (0, 2]. 

Furthermore, since in nonparametric wavelet regression the true wavelet coefficients 
at each level form a possibly sparse sequence, and the discrete wavelet transform approx- 
imates them subject to error, these posterior median estimation methods should also be 
proved useful in wavelet regression. It is hoped that, under some mild conditions, pos- 
terior median estimation methods obtained by certain combinations of prior and noise 
distributions will also achieve the best possible minimax rate over a wide range of Besov 
spaces, B~,oo, for any value of the parameter p C [0, +c~), simultaneously for a wide 
range of Lq-losses with q C (0, 2], extending thus the results of Johnstone and Silverman 
(2002) to larger families of prior and noise distributions. A direct comparison is then 
possible with the frequenstist optimality results obtained by Pensky (2003) for Bayesian 
wavelet shrinkage methods (for both Gaussian and non-Gaussian noise distributions) 
based on the posterior mean. 

However, all these are beyond the scope of this paper but  present the direction 
which we hope will be addressed in the future. 

5. Proofs 

5.1 Proof of Proposition 2.2 
Given the value y, let me(y) be the median of the posterior distribution, i.e., me(y) 

be such that F(me(y) ] y) -- 0.5. By Proposition 2.1, the former equation can be 
rewritten as 

+ 
1 + 

1 
1 +w(y)~ / (me(y )  l Y) = 0.5. 

If w(y) _> 1 then obviously the posterior median is zero since y is zero with probability 
~(y) ~ 

1+~(-~ -> 0.5. Moreover, the posterior median is zero if and only if ~ + - ~ H ( 0  [ y) <_ 0.5 

and ~(~) ~ l+~(y-----5 + ~ H ( 0  I Y) -> 0.5, i.e., if and only if 0.5(1 - w(y)) <_ fI(O ] y) <_ 
0.5(1 + 
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If we denote V(Y) = 2/:/(~ , then the latter condition is equivalent to - 1  <_ V(Y) - < 

1. In case IV(Y)I > 1, we can split the equation for the posterior median into two cases 

for me(y) being positive or negative, i.e., too(y) > 0 and [-I(mo(y) I Y) - 1-~(y) or 2 ' 
l+~(y) It is easy to show that  this system of equations me(y) < 0 and [-I(me(y) l Y) -- 2 �9 

has a strictly positive or negative solution for every y such that  IV(Y)] > 1. Thus we can 
separate cases of positive, negative and zero posterior median, i.e., IV(Y)I <- 1 if and only 
if me(y) = O, V(Y) < - 1  if and only if me(y) > 0 and V(Y) > 1 if and only if me(y) < O. 
Therefore, it is easily seen that  the equation for the posterior median is expressed as 

0, 

mt?(y)  -.~ / _ ~ - 1 ( ~  l Y), 
~ - 1  1-w(y) 

- U ( - - y - - -  I - Y ) ,  

Iv(y)l < 1, 

v(y) < -1 ,  
v(y) > 1, 

which, since sign(v(y)) = - s ign(y) ,  is equivalent to 

mo(y) = max{O, sign[]v(y)] _ l]} sign(y)fi_ 1 (1 -m in{1 ,w(y ) } ] l y , )  
2 

completing the proof of Proposition 2.2. 

5.2 Proof of Proposition 2.3 
From the definition of f ,  h(x) is an increasing function for x > M, and thus for f ( x )  

any x > y > M, we have (h(x)/f(x)) > (h(y)/f(y)). Under the assumptions on h and 
f ,  it is easily seen that  for all x,y e [0, M] we have (h(z)/f(x)) < C(h(y)/f(y)) for 
some constant C > 1. By symmetry of h and f ,  this inequality holds for all x, y E 
I - M ,  M]. Combining these two inequalities, we have, in the case y < M and x > M, 
that  (h(x)/f(x)) >_ (h(M)/f(M)) > C-l(h(y)/f(y)).  The function 77(y) can be written 
as 

~(y) = [h(y - ~) + h(y + ~ ) l~ (u )e~ ,  

and the following bounds hold for all y > M 

and 

~(y) > 

> 

v(y) < 

fo +~ fo ~ f (x  + u) ~(u)du h(y + u)~(u)du >_ C-lh(y) f(x) 

.~+~ h(y)Q1 (u)~(u)du C-1 

C-1Clh(y), 

h(y) [1//2 + CC2]. 
] /0 + h(y) ~(u)du < h(y) [CQ2(u) + 1]~(u) 

Therefore, we immediately get ~?(x) • h(x), completing the proof of Proposition 2.3. 
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5.3 Proof  of Corollary 2.1 
(i) Exponential-Power distributions.  Suppose tha t  both  h(x)  and ~(x)  have Ex- 

ponential-Power distributions wi th  parameters  a ,  T > 0 and/~,  a > 0 respectively, where 
/3 > (~ and ~- > a if a = /3 ,  i.e., the tail  of densi ty h(x)  is heavier than  the tail  of ~(x) .  We 
need to show tha t  bo th  parts of condit ion (L3) hold. Since h(x)  satisfies assumptions for 
f ( x )  we take f ( x )  = h(x) .  For the second par t  of condit ion (L3), we find the max imum 
of the following function on (0, +co)  wi th  fixed u > 0 

h(x  - u) _ e x p { - ] x  - ~ I" /T  ~ + X " / T " } .  
h(x) 

The derivative of F ( x )  = - I x -  ul a + x a is F ' ( x )  = a ( x  a-1 - ( x -  u) ~-1) for x k u and 
F ' ( x )  = (~(x a-1 + (u - x) a - l )  for x < u. The  derivative is always positive on 0 < x < u, 
and on x k u it is positive for a > 1 and negative for a < 1. In case a < 1 the max imum 
is achieved at point x = u, therefore the upper  bound of the ratio is 

Q2(u) = exp{u"/~-"},  

which is integrable with ~(u) since the integral of exp{ua/~ -a - u ~ / a  ~} is finite under  
the specified constraints on the parameters .  If the derivative is positive on x k u it 

h(x-u) implies tha t  weighed integral of h--K(;y- increases as a function of x, and it is unbounded 
as x ---* +co.  The weighed integral is also an unbounded function of x and therefore 
C2 = +co.  Straightforward calculations show tha t  the first part  of condit ion (L3) also 
holds with Q l ( u )  = exp{ - -Ua/Ta} ,  for c~ < 1. Thus,  condition (L3) is satisfied if and 
only if a _< 1, completing the proof of this case. 

(ii) t distributions. Assume tha t  bo th  h(x)  and ~(x)  are t distr ibutions with pa- 
rameters  Ul k 1 and u2 k 1 respectively. The tail  of h(x)  is heavier than  the tail  of ~(x)  
if vl < u2. We show tha t  both  parts  of condit ion (L3) hold for f ( x )  = h(x) .  For the 
first part  of condit ion (L3), we need to find a lower bound,  independent  of x, for the 
following ratio 

(Vl+l)/2 

u 2 + 2xu  
h(x)  1 +  x 2 + v l  

1 where x and u are positive. It is easy to show tha t  the following function Q1 (u) -- 

limits the above ratio from below, and it is integrable with ~(u) ,  therefore the first part  
of condit ion (L3) is satisfied. For the second par t  of condit ion (L3), s t raightforward cal- 

culations lead us to the following upper  bound  for the ratio h(z-~) which is independent  h(x) 
of x 

h,x , ( 1 )  
u 2 - 2xu  

h(;) 1 +  x 2 + ~ l l  

which is of order u ~1+1. Since 

(ux+l)2 

u 

_> 1+2- v1+ v Vt+4- Vl) =Q2(u), 

function ~(u)  is of order u -~2-1, the integral 
f o  Q 2 ( u ) ~ ( u ) d u  converges if and only if u2 - Ul > 1. Thus, condit ion (L3) is satis- 
fied if and only if v2 - Ul > 1, complet ing the proof of this case. 

Hence, the proof of Corollary 2.1 is completed.  
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5.4 Proof  of  Theorem 2.1 
In order to prove Theorem 2.1 we need the following lemma that can be justified by 

straightforward calculations. 

LEMMA 5.1. The following properties hold: (i) ~ / ( -y)  = ~(y); (ii) w(-y) = w(y),  
(iii) V( -Y)  -- -~f(Y); ( i v ) / ~ ( x  I - Y )  = 1 - / t ( - x  l Y); and ( v ) / ~ - l ( x  I - Y )  -- - / 4 - 1 (  1 - 
x l Y ) .  

Now we prove Theorem 2.1. 
(P1) Follows from the formula for the posterior median stated in Proposition 2.2 

and the symmetric properties of the functions stated in Lemma 5.1, completing the proof 
for this case. 

(P2) We need to show that 0 < mo(y)  < y for y > 0 and that it is an increasing 
function of y. First we show the former. As it was shown in the proof of Proposition 2.2, 
the posterior median is positive or zero for y > 0. So we need to show that me(y)  <_ y 
for y > 0. Since/~ is a strictly increasing function of its first argument, this statement 
is equivalent to /~(y I Y) > ~I(rn~(y) I Y) 1-~(~) Thus we need to show that 

- -  - -  2 

1 /~(Y I Y) - > 1-~(y)2 for all y > 0. Since w(y) > 0 it is sufficient to show t h a t / 4 ( y  I Y) - > 

2 f f ~  ~(y  - u)h(u)du / f ~  ~(y  - u)h(~)du + / 0  + ~  ~(v)h(y  - v)d~ 
2 / : / (y ly )  = + ~  = 

/ :~  ~(v ~)h(~)~ / ~  ~(v ~)h(u)d~ + ~0 +~ - - ~(~)h(y  + ~ ) ~ .  

To show that 2/4(y I Y) -> 1 it is sufficient to show that f : ~ ( v ) h ( y -  v)dv > 

f : o o  ~(v )h (y  + v)dv. The difference between these two integrals is 

]0 // ~(v)[h(y - v) - h(y + v)ldv = ~(v)[h(y - v) - h(y + v)ldv 

+ ~(v)[h(v - y) - h(y + v)ldv. 

Since h(x)  is unimodal, h(x) decreases for x > 0 implying that  h(Iv - Yl) - h(y + v) > 0 
1 which implies that  for v, y > 0. Thus both  integrals are positive and H(m~(y )  I Y) >- 

mo(y)  <_ y. Now we need to show that the posterior median me(y)  is an increasing 
function of y for y > A which by antisymmetry and thresholding property can then be 
extended to all real y. The equation for the posterior median, after some straightforward 
calculations, can be written as 

/ too(y )  ff.o+~ 
2 ~ ( y -  x )h ( x )dx  = [7~(y- x) - ~ (y  + x ) lh (x )dx  1 - p (y). 

Jo p 

To show that  the posterior median increases, we show that the difference between the 
implicit equations for the median above at some points Y2 > Yl _> A is positive, i.e., that  

f 
rno(y2) 

2 ~(Y2 - x )h ( x )dx  - 
J m o ( y l )  

1 --  P [ ~ ( Y l )  - -  ~P(Y2)] 
P 

2 fo ~~ -{- [~(Yl -- X) -- ~(Y2 -- x )]h(x)dx  
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~0 +c~ + [~(Y2 - x) - ~(Y2 + x)]h(x)dx 

- [~(Yl - x) - ~(Yl + x)]h(x)dx :> O. 

Since ~ is a unimodal  density, it decreases on (A, +co) ,  and since Y2 > Yl >_ me(y~), it is 
easily seen tha t  the first two summands  on the right hand side are positive. Therefore the 
posterior median is non-negative if the function Q(y) = fo [ ~ ( y -  x ) -  cfl(y+ x)]h(x)dx 
increases on ( A, +co) ,  which is exactly assumption CA2), completing the proof for this 
case. 

(P3) The  s ta tement  "the posterior median is a thresholding rule if and only if there 

exists A > 0 such tha t  for every y E [-A, A] we have IvCY)I = 12/~(~ < 1" follows from ~(~) - 

t h e  formula for the posterior median (2.4) since we saw in the proof of Proposi t ion 2.2 
tha t  the posterior median is zero if and only if IvCY)I -< 1. Note tha t  assumption (A2) 
is the same as the assumption tha t  function f (y )  = -V(Y)~(Y) increases on (0, +co) .  
Thus,  -V(Y) = f (Y) /~(Y)  is a product  of two increasing positive functions and therefore 
is also increasing, implying tha t  V(Y) decreases. Therefore, if assumpt ion (A2) is satisfied, 
{Y : IV(Y)I -< 1} is an interval and thus the condit ion of the s ta tement  above is satisfied. 
The compact  form (2.5) for the posterior median is now easily seen, completing the proof 
for this case. 

(P4) If we show tha t  3 a, M* > 0 such tha t  for all y > M* 

1 
P { # > y - a  I Y = y }  > -~, 

then  the posterior median possesses the bounded shrinkage property. Since probabil i ty 
P { #  > y - a I Y = Y, # -- 0} is zero for y > a, the probabil i ty above can be presented as 
a product  of the following probabilities 

P { #  > y -  a I Y = Y} = P { #  > Y -  a I Y = Y,# r 0}P{#  ~ 0 I Y -- y}. 

Next we shall find lower bounds for each of these probabilities so tha t  their product  is 
1 greater t han  ~ using corresponding posterior odds. Consider the following odds ratio for 

some c > 0 and such y tha t  y -  c > 0 

P { ,  > u - c I Y = y , ,  # 0} 
P{~t < y -  c [ Y = y,~t r 0} 

f+~(u)h(y+u)du 
f + ~  ~(u)hCY - u)du" 

According to Proposi t ion 2.3, for y > M 

h(y  - u) > Q l ( - u ) h ( u )  for u _< 0, 

h(y  - u) < Q2(u)h(u)  for u > 0. 

To est imate the integral in the numerator ,  we split it in two parts: integral on u E ( - c o ,  0] 
and integral on (0, c). For u C ( - c o ,  0], h(y - u) > h(y)Q1C-u), and for u C (0, c) 
h(y - u) >_ h(y) since y > y - u > y - c > 0 and h is a decreasing function on the positive 
semiline. Combining these two estimates, for y > M we have 

/: f f ~(u)h(y - u)du >_ h(y) Q1 ( -u )p (u )du  + h(y) ~(u)du > h(y)C1 > 0, 
o o  o o  
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for any c > 0, since, according to condition (L3) of Proposition 2.3, the first integral is 
a positive constant independent of y. The integral in the denominator can be estimated 
from below by 

~ + ~  j f + ~  ~(u)h(y - u)du > h(y) Q2(u)~(u)du 

for y > M since u > c > 0. Thus, for y > M the posterior odds can be estimated by 

P { #  > y -  c I Y = y ,#  # 0} C1 

P { p < y  c l Y  y, t t # 0 }  > - - = - f + ~  Q2(u)~(u)du" 

Since the integral f ? ~  Q(u)~(u)du is finite for any c > 0 and decreases to zero as c 
grows to infinity, there exists a constant a > 0 such that 

jf+o~ Q2(u)~(u)du > C1/3, 

which, in its turn, implies that  the posterior odds axe greater than 3 and the studied 
probability is greater than 3/4 for y > M + a 

3 
P { # > y - a ] Y = y , # # O }  > ~. 

The second odds ratio is 

P { # # 0 ] r = y }  1 p •(y) 

p { u = 0 1 y = y }  1-p (y) 
Since ~?(y) • h(y) and tail of h is heavier than tail of ~, this odds ratio tends to +cr  as 
y ~ +cr i.e., 

P 'I(Y) > A  p h(y) ~+cr 
1 - p ~ ( y )  - 1 - p ~ ( y )  

where A -- l iminfx_,+~ ~(x) /h(x)  > 0. Since h(x) and ~(x) both decrease for x > 0, 
their ratio can either increase or decrease on (0, +c~). Since h(x) /~(x )  --~ +oc as 
x --~ +c~, it implies that  h(x) /~(x)  increases to infinity. This, in its turn, implies that  
there exists y* = y* (p) such that for any y > y* 

h(y) > _ _  2 1 - P  
~(y) Ap 

and then the odds ratio 

P{#  # 0 [Y = y} 
> 2 .  

P{#  = 0 I Y = y} 

Therefore, for y > y* the probability P { #  # 0 ] Y = y} > 2/3. Using the obtained 
lower bounds for each of the probabilities, we can show that for y > max{y*, M + a} the 
probability of interest is greater than 1/2, i.e., 

P { p > y - a l r = y }  = P { # > Y - a l Y = Y , # # O } P { # # O ] Y = Y }  
3 2 1 

> 4 x 3  2' 

completing the proof for this case. 
Hence, the proof of Theorem 2.1 is completed. 



340 NATALIA BOCHKINA AND THEOFANIS SAPATINAS 

5.5 Proof of Theorem 3.2. (The Laplace-Gaussian case) 
It is not difficult to see tha t ,  in the considered case, 

2H(O , y)~(y) j[_~ ~ a = I(-oo,0] (0) r  - y - aa 2) exp{ay + (acr)2/2}dx 

+ I(o,+~)(0) ( exp{ay  + (aa )2 /2} rb ( - y /a  - a(T) 

jl ~ ) + - y + a o  2) e x p { - a y  + 

= e ( a a ) 2 / 2 1 z ( y ) C T G ( O / / G  I - y / ( : r  - dO,  y / c r  - dO'),  

where v(y) = eaYrb(-y /a  - aa) + e-a~rb(y/a - aa) and the parameters  of the CTG 

e-"~(Y/~ Taking dis t r ibut ion are P0 = - y / a  - ha, Pl = y / a  - aa and c~(y) = ~(y) 
the limit 0 -~ +co,  it is not difficult to see tha t  the marginal  densi ty is expressed as 

ae(aa)2/2 
~(Y) = 5 v(y). Therefore, by combining the above facts, it is easily seen tha t  the 

nonzero part  of the posterior dis t r ibut ion i s /4 (0  I Y) = C T G ( O / a  ] - y / a  - ha, y / a  - ha) 
while the posterior odds ratio for the component  at  zero in the mixture  is easily seen to 
be w(y) = 2(1-p)r completing the proof of Par t  (1) of Theorem 3.2. apcre(aa)e /2p(y)  ' 

To find the explicit formula for the posterior median,  we need to explore the function 
/4-1(  0 I Y) at the point 0* - 1-sig,(y)~(y) for y E ]R such tha t  17(Y)I > 1, i.e., 2 

--1 0* 0* -Po  + (I) {l_--:W~O(po)}, < 1 - a(y) 
/ l r -1(0"  [Y) = C T G - I ( o  * [Po,PI)  = -1 1-o* 

Pl - (I) { a--~-~-~(pl)}, otherwise. 

If O* < 1 - a(y) then H - I ( o .  ] y) is negative, and if O* > 1 - a(y)  it is positive because 
for 13 E [0,1] a n d p  E N, p -  (I)-l(~(I)(p)) _> 0, and hence p -  (I)-1 {~(I)(p)} ;> 0 r (I)(p) > 
Ze(p) ** 1 _> Z. 

It is easy to show tha t  the condit ion 1 - sign(y)w(y) < 2(1 - a(y))  is equivalent 
to sign[~/(y)] < 7(Y)- Since we are considering the case I (y)l > 1, the above condit ion 
is equivalent to sign[7(y)] = 1 ** sign(y) = - 1  *~ y < 0. Therefore given ['y(y)[ > 1, 
1 - sign(y)w(y) < 2(1 - a (y) )  implies y < 0. 

Calculat ing the inverse funct ion of the C T G  dis t r ibut ion at  the point  of interest 
wi th  parameters  P0 = - y / a  - ha, Pl = y / ~ r  - -  a~, we get 

a C T G - I  ( 1 -  sign(y)w(y)2 - Y  - aa' Y - a 

= sign(Y) [IY[ - aa2 - aq~-l ( (l  + w(Y):u(y)ea'~' ) ] , 

since w(y) and v(y) are even functions by L e m m a  5.1. 
As it was shown above, for y E ]R such tha t  lT(y)l > 1, l y l -  ha2 - 

a~-l(l+~-~2(Yv(y)ealYl ) is non-negative. Thus,  the required expression (3.7) for the pos- 
terior median is easily obtained.  It was also shown tha t  the posterior median remains 
zero for the values of y E N such tha t  I~/(y)l < 1. From Theorem 2.1, if 7(Y)r (which 
is a monotonic ant isymmetr ic  function) decreases then  the posterior median is zero on a 



P O S T E R I O R  M E D I A N  E S T I M A T E S  OF SPARSE S E Q U E N C E S  341 

symmetric interval I-A, A], where the value of the threshold A > 0 is the positive solution 
of the equation 7 ( A )  = - 1 ,  i . e . ,  the positive solution of 

O(A/a  - ha) O ( - A / a  - ha) 2(1 - p) 

r  - ha) r  - ha) hap 

To show that the function ~(y)r decreases we use Remark 2.2(iii), i.e., we show that 
for each x > 0, Ca (Y - x) - Ca (Y + x) increases for y > 0. Indeed, 

Ca(Y - x) - Ca(Y + x) = r [e_(y_x)2/2a2 _ e_(y+x)2/2o2] = r - x ) / a )  [1 - e-2XY/~2]. 
o 

Thus, the posterior median is a thresholding rule with the threshold A > 0 defined above, 
completing the proof of Part  (2) of Theorem 3.2. 

For y > 0, the posterior median is given by 

m~(y) = y - aa 2 - aO -1 ( (1  +w(Y)2)u(y)e~Y). 

Using the well-known expressions O(x) ~ 1 r as x --~ +ec,  O(x) ~ --~-,r as 
x --~ - c ~  and O-1(0.5 + x) ~ r  as x --+ 0, the asymptote of the argument of �9 -1 
given above is easily seen to be 

(l  +w(Y))u(y)eaY = O'5 + r  - a a ) ~ p a  p (l + ~ as y - ~ + c ~ ,  

and therefore, by the antisymmetry property of the posterior median, its asymptotes are 
given by 

me(y)  = y - s ign(y)aa 2 - sign(y) e x p ( - ( I Y I / a  - a a ) 2 / 2 ) L p P ( l  + o(1)), as y --~ oc, 

which completes the proof of Part  (3) of Theorem 3.2, and hence Theorem 3.2 is proved. 

5.6 Proof  of  Theorem 3.3. (The Gaussian-Laplace case) 
The marginal density y(y) in the considered case coincides with the marginal density 

in the Laplace-Gaussian case obtained in Subsection 5.5. Using this result, it is not 
difficult now to see that 

1 ~ + ~  
la(x)h(y  - x )dx   (01y) = - 0  

he(ha)2~2 
- -  2~(y) ( ( O ( - y / a  - ha) - 0 ( - 8 / a  - aa))eayl@,+c~)(8) 

+ e-ay(1 - 0 ( - m i n ( 8 ,  y ) / ~  + ha))) 
= C T N ( O  [ y, aa  2, - h a  2, a), 

where ~(y) = e~Ur The posterior odds ratio for the component 
(1--p)e -~lul at zero in the mixture is easily seen to be w(y) = pe(O~,),~/2{e~u,~(_y/a_a~)+e_,~(y/a_aa)}, 

completing the proof of Part  (1) of Theorem 3.3. 
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From Proposition 2.2 we know that  for y > A the posterior median is obtained 
by too(y) = H- I (1 -~2(Y  l Y), which in this case is expressed as 2 f i ( y )TN_(mo(y ) )  = 
1 - w(y),  since we know that 0 < too(y) <_ y. The former equation is equivalent to 

1 1 
r  - a ~ )  = 7 ~ ( y / o  - a ~ )  + e 2 ~  - a o )  - 1 - p e _ ( o ~ ) ~ i ~  ' 

P 

from which easily follows formula (3.11) taking into account the antisymmetry prop- 
erty of the posterior median. The equation for the threshold A > 0 is - ~ ( 2 C T N ( O  I 
A, aa 2, - a d  2, a) - 1) = - 1  which can be expressed as 

1 - p e _ ( o : ) : i ~  = e ~ O ~ @ ( _ ~ / ~  _ a ~ )  + @ ( ~ / ~  - a ~ )  - ~ @ ( - a ~ ) .  
P 

If the parameters are such that ]~(Y) l -< 1 for all y E ]~, the equation above does not have 
a final solution and the posterior median is identically zero. This condition is equivalent 
t o  l ; p  ~ (2(I)(aa) - X)e (aa)2/2. This completes the proof of Part  (2) of Theorem 3.3. 

The asymptotes (3.13) for the posterior median in this case are immediately seen, 
and hence Theorem 3.3 is proved. 

5.7 Proof of Theorems 3.4 and 3.5. (The Laplace-Laplace case) 
We start  with case of unequal parameters. The marginal density ~](y) in this case is 

given by ~(y) -- ~ *  h(y) = ~ f + ~  exp{-# iy  - u] - ~,]ui}du. Denote Po = min(0, y) and 
Pl -- max(0, y). Since the integrand has two points of discontinuity, 0 and y, calculating 
the integral separately on the three intervals ( -c~ ,  Po), (Po, Pl) and (Pl, +o c), and after 

some simple algebra, we get the expression y(y) - "~ ve-"i~'-~e-~l~' 
- -  2 v 2 _ # 2  �9 

Now we work out the posterior distribution function. It is not difficult to see that  

[-I(O I Y)V(Y) = - T  exp{-PIY - ul - L'iui}du 
( x )  

v# ( exp{(~, + #) min(8,p0)} 
= - T  \exp{-#Y} v + # 

exp{#y} exp{-(L' + , )p l}  - exp{- (~  + #)8} + 1(8 _> Pl) v + #  

+ 1(8 _> Po) exp{-  sign(y).//} 
e -  sign(y)(v-#) min(O,pl) _ e -  sign(y)(v-p)po 

x ) 

Using the expression for ~?(y) given above, we can now rewrite the posterior distri- 
bution function in terms of the Truncated Laplace distribution, i.e., 

v - # e x p { - #  max(0, y) + v min(0, y ) } T L ( 8  
[ / (O  [ Y) = 2 r,e-,~tyl - #e -~ 'M I V + min(O, Y)) # ,  

+ u - # exp{-L, max(O, y) + tt min(O, y)} TL(O I - + ~, max(O, y), +oc) 
2 r,e-~lyl - #e-vlyl 

# + u exp{ - /~ ly l}  - e x p { - u l Y l }  + - -  
2 ue-~lyl - #e-~'lyl 

x TL(O I sign(y) (u - #), min(O, y), max(O, y)). 
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The posterior dis t r ibut ion is the CTL dis t r ibut ion with a --- min(0, y), b -- max(0,  y), 
A1 = p + u, A2 = sign(y)(v - #), a l ( y )  = ~-~' e x p { - - / ~ m a x ( O , y ) + ~ m i n ( 0 , y ) }  2 ,,~-~,~t-u~-<~, and a2(y)  = 

~-~ .xp{-~ m~x(0,U)+, min(0,V)} The posterior  odds ratio for the component  at  zero in the  
2 ve-~lui--t~e-vlu[ " 

mixture  is easily seen to be w(y)  = 1-p 1-(u/ , )  2 p 1-~e-( - - - ) '~ l '  complet ing the proof  of Par t  (1) 

of Theorem 3.4. 
The  function 7(Y), after some straightforward calculations, is expressed as 7(Y) = 

sign(y) x _ - ~ p T ~ r ( e - ( ~ - u ) l u l -  1). Therefore,  the  threshold A > 0 satisfies the  equat ion 

7 ( A ) =  - 1  which gives A = u--~, l~ 1 +  1-p~2-u2)p t*/z . In case u > # and 1-P # 2 - V Z p  v~, + 1 <_ 0, 

a finite solution of 3'(A) = - 1 ,  however, does not exist, as for any y > 0 we have 
['r(y)l _< 1. According to the formula for the poster ior  median given in Proposi t ion  
2.2, this implies tha t  the posterior  median is zero for any observed value y. Therefore 
we can rewrite the formula for the threshold A > 0 taking this case into account,  i.e., 
A =  1 l o g ( m a x [ 0 , 1 +  1-Pt~=-u21). 

iz--v t p y/z J* 
We find now the posterior  median in the considered case. For y > ),, the  equat ion 

for the posterior median m e ( y )  is given by f f I (mo(y)  I Y) = 0.5(1 - w ( y ) ) .  Since we know 
tha t  0 _< rao(y) <_ y, the equat ion for the poster ior  median can be  rewri t ten  as 

1 - pue_UY(1 _ (# /u )2 )  = lz(e_tZ u _ e_Vy ) _ (p q- u)(e_Uy _ e_~ .Y)TL(mo(y  ) [ u - #, O, y) 
P 

which, after  some simple algebra, gives 

1 - P ( u  ) ) .  1 log u # e_(V_u)y + I ,z mo(y )  # -  u # + u # + u up 

Since the posterior median is an ant isymmetr ic  function, the equat ion for the poster ior  
median for [Y[ > A is given by 

u 1 - p u - # )  
1 log # e -(~-~*)M + - - - k -  mo (y) = sign(y) P _ u # + u # + u p u 

complet ing the proof  of Par t  (2) of Theorem 3.4. 
For the  asymptot ic  behavior  of the posterior  median as y --~ oc we consider the  

following two cases. For u < #, we have 

1 log (1  + ~ )  mo (y) = y - sign(y) # _ u 

( 1 - p u 2 - #  2 ) 
+ s i g n ( y ) # _ u # l  V_e_(U_~,)ly I 1 +  P ~-~ ( 1 + 0 ( 1 ) ) ,  

v2_/ ,2 
while, for u > # and p > ~t.+~2_~2, we get 

1 l o g (  u _ _ +  l - p u - # )  
too(y)  = s i g n ( y ) # _  u # + v  - -7 - -  v 

1 # / u  e_(._u)lul ( 1 + sign(y) # _ ~  1 - p u 2 - #2 + 0(1)), 
- - + 1  p u 2 
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completing the proof of Part  (3) of Theorem 3.4, and hence Theorem 3.4 is proved. 

We consider now the case of equal parameters. For the marginal density ~}(y) we 
get 

r](y) ~- 4(1 + PlYl) exp{--~lYl}, 

while for the posterior distribution function, denoting again Po = min(O, y) and Pl = 
max(O, Y), and after some simple algebra, we obtain 

_f/(0 [ y) -- 4~7(y) oo exp{-u ly  - u[ - u]ul}du 

1 
- -  [TL(O ] 2v , -oc ,po)  + 2~]y]l(O _> po)Vniform(O [ Po,Pl) 

2(1 + . l y l )  

+ 1(0 >_ p l ) T L ( O  [ 2u, pl, +co)]. 

The posterior distribution is the CTL distribution with a = min(0, y), b = max(0, y), 
A1 = 2v, A2 = 0, a l ( y )  = ct2(y) __ ~ ' 1  The posterior odds ratio for the component 

at zero in the mixture is easily seen to be w(y)  = 2(1-p) completing the proof of Part  

(1) of Theorem 3.5. 
The function V(Y), after some straightforward calculations, is expressed as V(Y) = 

- P ~ Therefore, the threshold A > 0 satisfies the equation V(A) = - 1  which gives 1 - - p  2 " 

A = _2 1-p We now find the posterior median in the considered case. For y > A, the v p 

equation for the posterior median m e ( y )  is given by [-I(mo(y) [ y) = 0.5(1 -w(y ) ) .  Since 
we know that 0 < me(y)  <_ y, the equation for the posterior median can be rewritten as 
1+~yl [1 + 2umo(y)] - 1 = _ 1-pp l+uy2 which gives m e ( y )  -- y2 --  1-pup �9 Since the posterior 
median is an antisymmetric function, the equation for the posterior median for lY[ > A 
is given by 

y 1 - p  
too(y) = ~ - s i g n ( y )  ~P , 

completing the proof of Part  (2) of Theorem 3.5, and hence Theorem 3.5 is proved. 

5.8 Proof  of Theorem 3.6. (The t l - t3 case) 
First of all, we need to calculate the integral of the following function (with param- 

eter y) 
2 1 

 (u)h(y - u)  -- (1 + - +  2/3) 2 

We present the ratio above as the sum of ratios 

1 A ( u  - y) + B C u  + D F u  + G 
( l + ( u - y ) 2 ) ( l + u 2 / 3 )  2 = l + ( u - y ) 2  + 1 + u 2 / 3  + ( 1 + u 2 / 3 )  2' 

where coefficients A, B, C, D, F and G may depend on parameter y. Multiplying by the 
common denominator and equating coefficients for each power of u, after some simple 
algebra, we have the following equations for the coefficients 

A + 3 C = 0  

B - y A  + 3 D -  6yC = 0 
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3C + 2yD + 2yG - (y2 + 1)(C + F)  = 0 

6C + 2 y D -  (y2 + 4 ) C -  3F =- 0 

2B - 2yA + (y2 + 4)D - 6yC + 3G - 6yF = 0 

B -  yA + (y2 + 1)(D + G )  = 1. 

The solution of this system finds the expressions B = B(y), C -- C(y), D = D(y), 
F = F(y) and G = G(y) given in Subsection 3.5. Therefore the marginal density rl(y ) is 
given by 

= /  (u)h(y - u)du = + + a /2 ) ) ,  
JR 

while the posterior distribution function is given by 

f i ( o  I y )  - ~p(u)h(y - u)du 
, ( y )  -o  

1 

B + v/-3(D + G/2) 3C 
1 + 0  2 

log + B(Tr + 2 arctan 0) 3 + (y - 0)2 

0 - y  
v/3(D + G/2) (~r + 2arc tan- -~  - )  

c ( o -  + 3F'  
1 + ~ - - ~ 2 - ~ ] "  

-4- 

+ 

Substituting the values of the coefficients B = B(y), C = C(y), D -- D(y), F = F(y) 
and G = G(y) into the equations for ~/(y) and/2/(0 l Y), we get the following 

and 

v(v) = 1 y6 + 6(4 + v/-3)y a + 36y 2 + 8(3v/3 - 4) 
~- 9y s + 48y 6 + 38y 4 - 52y 2 + 48 ' 

f i (o I y) = 
1 1 

y6 + 6(4 + x/~)y 4 + 36y 2 + 8(3x/3 - 4) 7r 

1 + 0  2 
x 12v/-3y(y 2 + 2)log 3 + (y - 0) 2 

7~ 
+ 6v/-3(y 4 + 4) ( 2  + arc tan0)  

+ ( y 6 + 2 4 y n + 3 6 y 2 - 3 2 ) ( 2 + a r c t a n ( ~ - ~ ) )  

+ V~I (y6 + 6y4 _ 12y2.1q.__iy_ 0 - ) ~ - -  8)0 -- y(y6 _ 60y2 _ 32) )  . 

The posterior odds ratio for the component at zero in the mixture is easily seen to be 

~(y) = (1 - p )  
p(B(y) + 4~(D(v)  + C(y)/2))(1 + y2/3)2' 

completing the proof of Part  (1) of Theorem 3.6. 
Expressions (3.23) and (3.24) follow easily now by substituting the found expressions 

for/~(0 ] y), ~(y) and w(y) into the equations -fiI(mo(y) I Y) = 0.5(1 -w(y))  for y > A and 



346 NATALIA BOCHKINA AND THEOFANIS SAPATINAS 

2/ t (0  I A) - 1 --- -w(A) for the posterior median too(y) and threshold A > 0 respectively, 
proving Par t  (2) of Theorem 3.6 

To work out  the asymptot ic  behavior of the posterior median, we consider the 
equation [[(mo(y)  I Y) = 0.5(1 - w(y)) for y -+ § It is not  difficult to see tha t ,  in 
this case, we have 

1 1 

y6 § 6(4 + v/-3)y 4 § 36y 2 § S(3vf3 - 4) 7r 

1 § too(y) 2 
x 12v/3y(y 2 § 2)log 3 § (y - too(y)) 2 

+ 6v/3(y 4 + 4) arctan 0 + (y6 § 24y4 + 36y2 _ 32) cre tan  m0(y)  - v 

+ ((y~ + 6~ ~ - 12y ~ - s )o  - y(y~ - 60y ~ - 32)) 1 + (~ - m o ( y ) ) ~ / 3  

1 - p (9y s + 48y 6 + 38y 4 - 52y 2 + 48) 

p V/-3(1 + y2/3)2(y6 + 6(4 + V~)y 4 + 36y 2 + 8(3V/-3 - 4))" 

Take now the leading order of each component ,  i.e., 

1 ( 1 + mo(y)  2 + 6 v ~ y  -2 arctanmo(y)  12v/-3y-3 l~ 3 § (y --~(0(y)) 2 

(mo(y) - y ) / ~  
1 § ( y -  mo(y ) )2 /3 ]  

arctan \( m0 (y)v~ - Y). + + 

1 - P 2 7 v % _ 2 (  1 + o(1)). 
P 

There are two possibilities: rna(y) --~ +oc or mo(y) -+ constant ,  as y --+ +c~.  Since in 
the lat ter  case we get a contradiction (arc tan(~t3)  --+ 0), the former case must  be true,  

i.e., 

arctan ( m o ( y )  - y )  (mo(y) - y ) / x /~  
v ~  + 1 + (y - mo(y ) )~ /3  -~ o, 

which implies t ha t  me(y)  - y -~ O. Denote now f ( y )  = y - O(y). Then 

1 1 
v ~  f ( y )  1 + f ( y ) 2 / 3  

Therefore the asymptot ic  behavior of the  posterior 

6y-2vr3 arc tan(y - f ( y ) )  - arctan f(y-) v~ 
1 

---- - I t  - P27v~y-2 (1  + o(1)), 
P 

implying tha t  f ( y )  = 3(1 + o(1)). 
median is given by 

3 (1 + o(1)), as y ---~ (x), 

completing the proof  of Par t  (3) of Theorem 3.6, and hence Theorem 3.6 is proved. 
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5.9 Proof of Theorem 3.7. (The (scaled) tl-tl case) 
The marginal density r/(y) in this case is given by 

~(y) = 9f R ~(y - u)h(u)du 
Ta j~ du 

= ~ ( ~ 2 + ( ~ - y ) ~ ) ( ~ + u ~ ) "  

To calculate the above integral, we find the coefficients (which may depend on y) in the 
following expansion 

( ~ 2 + ( u  _ y ) 2 ) ( ~  + u 2 )  
A ( u -  y) + B Cu + D 
a 2 + ( u - y ) 2  + T2+u 2" 

Multiplying by the common denominator and equating coefficients for each power of u, 
after some simple algebra, we have the following equations for the coefficients 

A + C = 0  

B - A y -  2Cy + D = 0 
AT 2 -}- C(y  2 -}- a 2) - 2Dy = 0 
( B -  Ay)72 + D(y 2 + a 2) = 1 .  

The solution of this system finds the expressions B = B(y), C = C(y) and D -- D(y) 
given in Subsection 3.6. Therefore, after some simple algebra, the marginal density ~/(y) 
is expressed as 

1 (T + a)(y 2 + (T-- a)2) 
n(y) ~ 4y2~2 + (y2 + ~2 _ ~2)2, 

and the posterior distribution function is given by 

1 (Ta ( 0 2 + T  2 ) 
[-I(O [ y) = 7r(B(y)T + D(y)a) -~C(y)log (0 ---y)-2-T a 2 

+ B ( Y ) 7 ( 2 + a r c t a n ( ~ - ~ )  ) 

The posterior odds ratio for the component at zero in the mixture is easily seen to be 

(1 - p)~ 
w(y) ---- p(cr 2 + y2)(B(y)7 + D ( y ) a ) '  

thus completing the proof of Part  (1) of Theorem 3.7. 
The threshold A > 0 satisfies the equation 7(A) = - 1  which gives 

7aC(A) l o g \  T2 --}- 2B(A)Tarctan -- P - -  
~0"  

a 2 + A2" 

If we take the limit y ~ +oo in I?(Y)I -< 1 (which implies that  the posterior median is 
O" identically zero) we get 1-p > ~ Thus a finite solution exists if and only if p > ~u p --  ~"  

otherwise the posterior median is zero for all y E R. 
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We now find the posterior median in the case p > T-~J" For y > A, the equation for 

the posterior median mo(y) is given by [-I(mo(y) I Y) -- 0.5(1 - w(y)). The equat ion for 
the posterior median 0 is now expressed as 

(5.1) 2TB(y)arctan (m~ -- Y ) + 2aD(y)arctan (m~ ) 

(m0(y)2+  2 ) _  +o c(v)log 2 

We now s tudy the asymptot ic  behavior of the posterior median as the observed 
value y goes to +co.  Taking the leading terms in coefficients B(y) ,  C(y) and D(y) in 
the equat ion for the posterior median,  we have 

2Tarctan(m~ ) 
V 

( 1  - p)zca 
py2 

2a (mo f y ) l  2aT [" mo(y)2 +'r2 ~ 
+ ~ arc tan  + - - ~  log ~ ) ( y  --- m---~)-~ ~ a 2 

The absolute value of the te rm with the logari thm is bounded by 0 ( 2  log y/y3) = o(1/y2), 
t ransforming the above equat ion into 

(5.2) TarctanIm~ ) + a a r c t a n  ( - ~ )  ~ 
( 1  - p)~a 

2p 

If there exists a limit of mo(y) as y --* +o0 then  there are three possibilities 
1. too(y) -~ y - c, c = constant  > 0; 
2. mo(y) --~ c, c = constant  > 0; 
3. too(y) -* c~ and y - too(y) ~ oo. 

We now take the limit as y --, +co  in the equation (5.2) in each of these cases. 
1. For mo(y) --* y - c, c = constant  > 0, we have 

--~- arctan + a ~ -- 2p 
(c) 

~:~ arctan - -  2Tp' 

and which has a solution if and only if a < 7- and p > ~. Then  c = a tan(~-~p). 

2. For me(y) --* c, c = constant  _> 0, we have 

(c) 
--T~ + a arctan 7 r a ( 1 - p )  c=~arc tan(C ) 7r ( T  l - - p )  

2; = 2 7 ' 

and which has a solution if and only if 0 < z _ 1-p < 1 which is equivalent to ~ < p < a p 

z~. Then  c =  T tan(~-a r 7r(1;p)). We saw above tha t  if p _< ~+~ the posterior median is 
identically zero. 

3. For mo (y) ~ c~ and y - m0 (y) ~ oo, we have 

~(a  - w) ~o(1 - p) 

2 2p ' 
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Working out  the approximation for the posterior which implies tha t  a < ~- and p = 7" 
median in this case, using the approximat ion arctan(x)  - ~ 1 1 - ~ ~ + o ( ~ ) a s x ~ + o c ,  

we have 

y2 y-- mt~(y) + ~-~ mgiy) + - 7  log ( y _ - m - - ~ ) - ~  o 2 ]  

(~- _ ~)~ 
y2 

We now consider two cases: me(y) -- cy + d and me(y) -- o(y), where c �9 (0, 1). In the 
lat ter  case, we have 

2TO 2aT 40"T (me(yy)) Y (m- - -~ )  
y3 y2mo (y-~ + - 7  log ~ 0, tha t  is me(y) 2 log ~ 1, 

i.e., t ha t  function ~ and its logari thm have the same asymptot ic  behavior which is mo(y) 
possible if and only if the function is a constant  which does not satisfy the assumed 
condit ion me(y) = o ( y ) .  In the first case, the equation for c is 

1 1 + 2log ( i_~_c c ) = 0 ,  
1 - c  c 

1 1 Expanding all terms in equation (5.1) up to order of ~ ,  which is satisfied with c = ~. 
we get 

( ( 2T ~-(72 + 302) 4da ~ 2o 7r(372 ~-02) + 

~5 2y5 + 7 ]  + 7 2y2 y5 ] 

Rearranging the terms, we have d = . (r-o)(~-2~) 32 a , and therefore the asympto te  for 
is given by the posterior median in case p = 7 

m0(y) -- y ~ (~ - ~)(~ - 20) + o(1). 
2 32 a 

Hence, the proof of Par t  (3) of Theorem 3.7 is completed. 
We now s tudy  whether  the posterior median is an increasing func t ion .  In this case, 

assumption (A2), which assures the monotonici ty  of the posterior median,  does not  hold 
so we need another  way of proving or disproving tha t  the posterior median is an increasing 
function. We take the equat ion for the posterior median (3.28) and differentiate it wi th  
respect to y, rearranging the terms: 

To'C'(y) log (mo -- y)2 + 05 -- 2TB'(y) cretan y -- mo(y)a 

+ 2aD'(y) arc tan  - p(y2 + o5)5 

2(y - m0(y)) ~oc(y)  - 2~B(y) 
- ( y - ; ~ o ( y - ~ u  ~ ~ + (.~0(y) - y)5 

(m~(y) + ~5)((m0(y) - y)~ + o~) 
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We now consider the limit of this equation as y ~ +c~ in each of the three cases. 
1. For me (y) --* y - c, c = constant > 0, and taking the leading behavior of each 

term, we have 

- y--T log + ~-5 arctan - y3 

y2(c2 + 32)" 

2~a(1 - p) 4CTa 2Ta 
_ _  - -  o 

py3 y3(c2 + y2( 2 + 

2~  which makes the derivative m~(y)  The leading term of the left hand side is - y-WJ'~hU 
positive for large y, and thus the posterior median increases for large y. 

2. For me(y)  --* c, c = constant _> 0, which holds if and only i fp  < ~, we have 

6Ta 273 43 ( c )  2~ra(1- p )  2Ta 2 T 7 C  2Tam~(y)  
y4 logy2 y4 y3 a rc t an  y4 + py3 - -  - 7  y2(c2 + T2) '  

where the constant c is such arctan(C) = ~[~ _ lp__~]. The leading term on the left hand 

side is ~-~(6 log y2 _ 4), which is positive for sufficiently large y making the derivative of 
the posterior median negative. 

3. For me(y )  --~ y /2  + d (a < T and p ---- ~), the limit as y --~ 4-oo in this case is 
given by 

y4 l o g y 2 / 4 + y d + d  2 + T 2 + - ~  -- - - ~  - 

y3 y4 y4 y4 ' 

16Ta 32ram~ (y) which is equivalent to - y-~-- ~ - y4 Thus the posterior median increases for 
large values of y. 
Thus, in the case p < ~ the posterior median decreases and it increases if and only 
if a < r and p _> ~, completing the proof of Part  (2) of Theorem 3.7, and hence 
Theorem 3.7 is proved. 
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