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Abstract. We consider a Gaussian sequence model that contains ill-posed inverse problems as special cases. We assume that the
associated operator is partially unknown in the sense that its singular functions are known and the corresponding singular values
are unknown but observed with Gaussian noise. For the considered model, we study the minimax goodness-of-fit testing problem.
Working with certain ellipsoids in the space of square-summable sequences of real numbers, with a ball of positive radius removed,
we obtain lower and upper bounds for the minimax separation radius in the non-asymptotic framework, i.e., for fixed values of
the involved noise levels. Examples of mildly and severely ill-posed inverse problems with ellipsoids of ordinary-smooth and
super-smooth sequences are examined in detail and minimax rates of goodness-of-fit testing are obtained for illustrative purposes.

Résumé. Nous considérons un modèle séquentiel gaussien incluant des modèles de type « problème inverse » comme cas particu-
lier. Nous supposons que l’opérateur associé est partiellement connu au sens où les fonctions propres associées à la décomposition
en valeurs singulières sont connues, mais pas les valeurs propres. Ces dernières sont malgré tout observables en présence d’un bruit
gaussien. Dans ce cadre, nous nous concentrons sur l’étude d’un problème de test d’adéquation. En utilisant à la fois une condition
d’énergie sur le signal considéré ainsi que des propriétés de régularité, nous établissons des bornes supérieures et inférieures pour
la vitesse minimax de séparation dans un cadre asymptotique, i.e. pour des valeurs fixées des niveaux de bruit impliqués dans les
observations. Pour finir, des exemples particuliers de problèmes inverses et de régularités sont considérés et les vitesses minimax
de séparation correspondantes sont discutées en détail afin d’illustrer les résultats obtenus.
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1. Introduction

We consider the following Gaussian sequence model (GSM), introduced in [10],{
Yj = bj θj + εξj , j ∈ N,
Xj = bj + σηj , j ∈ N, (1.1)

where N = {1,2, . . .} is the set of natural numbers, b = {bj }j∈N > 0 is an unknown sequence, θ = {θj }j∈N ∈ l2(N) is
the unknown signal of interest, ξ = {ξj }j∈N and η = {ηj }j∈N are sequences of independent standard Gaussian random
variables (and independent of each other), and ε,σ > 0 are known parameters (the noise levels). The observations are
given by the sequence (Y,X) = {(Yj ,Xj )}j∈N from the GSM (1.1) and their joint law is denoted by Pθ,b . Here, l2(N)

denotes the space of square-summable sequence of real numbers, i.e., l2(N) = {θ ∈ R
N : ‖θ‖2 :=∑

j∈N θ2
j < +∞}.
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The GSM (1.1) arises in the case of ill-posed inverse problems with noisy operators. Indeed, consider the Gaussian
white noise model (GWNM)

dYε(t) = Af (t) dt + ε dW(t), t ∈ V, (1.2)

where A is a linear bounded operator acting on a Hilbert space H1 with values on another Hilbert space H2, f (·) ∈ H1
is the unknown response function that one wants to detect or estimate, W(·) is a standard Wiener process on V ⊆ R,
and ε > 0 is a known parameter (the noise level). For the sake of simplicity, we only consider the case when A is
injective (meaning that A has a trivial nullspace) and assume that V = [0,1], H1 = L2([0,1]), U ⊆ R and H2 =
L2(U). In most cases of interest, A is a compact operator (see, e.g., Chapter 2 of [14]). In particular, it admits a
singular value decomposition (SVD) (bj ,ψj ,ϕj )j∈N, in the sense that

Aϕj = bjψj , A	ψj = bjϕj , j ∈N, (1.3)

where A	 denotes the adjoint operator of A, and (b2
j )j∈N and (ϕj )j∈N are, respectively, the eigenvalues and the

eigenfunctions of A	A. Thus, the (first equation in) GSM (1.1) arises where for all j ∈N

Yj =
∫ 1

0
ψj (t) dYε(t), θj =

∫ 1

0
ϕj (t)f (t) dt, ξj =

∫ 1

0
ψj(t) dW(t), j ∈ N,

and b2
j > 0 (since A is injective). In this case, the GWNM (1.2) corresponds to a so-called ill-posed inverse problem

since the inversion of A	A is not bounded. Possible examples of such decompositions arise with, e.g., convolution or
Radon-transform operators, see, e.g., [14]. The effect of the ill-posedness of the model is clearly seen in the decay of
the singular values bj as j → +∞. As j → +∞, bj θj gets weaker and is then more difficult to perform inference on
the sequence θ = {θj }j∈N.

In order to motivate our investigation, we stress that ill-posed inverse problems have been at the core of several
contributions over the last two decades. In the early literature, the associated compact operator A (and, hence, its
sequence b = {bj }j∈N of singular values) was supposed to be fully known. (Note that, in this case, the second equation
in the GSM (1.1) does not appear.) We refer, e.g., to [7–9,11,12] in the minimax estimation context. In the goodness-
of-fit paradigm, we mention for instance [18,21] where minimax separation radius/minimax separation rates (signal
detection or goodness-of-fit testing) were established, for ill-posed inverse problems with various smoothness condi-
tions on the sequence of interest. Specific situations have been also recently investigated in, e.g., [17] (tomography)
or [5] (biophotonic imaging).

The case of an unknown compact operator A that is observed with Gaussian noise has also been recently treated
in the estimation literature, especially the situation where A is partially unknown, see, e.g., [10,13,15,20]. In these
contributions, it is assumed for the corresponding SVD (1.3) that

• the sequence of singular functions (ψ,ϕ) = (ψj ,ϕj )j∈N is known,
• the sequence of singular values b = {bj }j∈N is unknown but observed with some Gaussian noise.

In other words, the following sequence model is considered

Xj = bj + σηj , j ∈N,

where η = {ηj }j∈N is a sequence of independent standard Gaussian random variables (and independent of the standard
Gaussian sequence ξ = {ξj }j∈N), and σ > 0 is a known parameter (the noise level). Therefore, the second equation in
the GSM (1.1) is also readily available.

To motivate the GSM (1.1), consider the following deconvolution model (see also [10] for a complete discussion
on this subject)

dYε(t) = g 	 f (t) + ε dW(t), t ∈ [0,1], (1.4)

where

g 	 f (t) =
∫ 1

0
g(t − x)f (x) dx, t ∈ [0,1],
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is the convolution between g(·) and f (·), g(·) is an unknown 1-periodic (convolution) kernel in L2([0,1]), f (·) is
an unknown 1-periodic signal in L2([0,1]), dYε(·) is observed, W(·) is a standard Wiener process, and ε > 0 is the
noise level. Let φj (·), j ∈ N, be the usual real trigonometric basis on V . The model (1.4) is equivalent to the (first
equation in the) GSM (1.1) by a projection on the trigonometric basis φj (·), j ∈ N. In the case where the kernel g(·)
is unknown (i.e., the sequence (bk)k∈N = (〈g,φk〉)k∈N is unknown), suppose that we can pass the trigonometric basis
φj (·), j ∈N, through the convolution kernel, i.e., to send each φj (·), j ∈N, as an input function f (·) and observe the
corresponding dYε,j (·), j ∈ N. In other words, we are able to obtain training data for the estimation of the unknown
convolution kernel g(·) in this setting. In particular, we obtain exactly the two sequences of observations Yj and Xj ,
j ∈ N, in the GSM (1.1). In this case, the corresponding noise levels coincide, i.e., ε = σ .

To the best of our knowledge, there is no research work on minimax goodness-of-fit testing in ill-posed inverse
problems with partially unknown operators. Our aim is to fill this gap. In particular, considering the GSM (1.1)
and working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of
positive radius removed, we obtain lower and upper bounds for the minimax separation radius in the non-asymptotic
framework, i.e., for fixed values of ε and σ . Examples of mildly and severely ill-posed inverse problems with ellipsoids
of ordinary-smooth and super-smooth sequences are examined in detail and minimax rates of goodness-of-fit testing
are obtained for illustrative purposes.

The paper is organized as follows. Section 2 presents the considered statistical setting, a brief overview of the main
results. Section 3 is devoted to the construction of the suggested testing procedure. A general upper bound on the
maximal second kind error is then displayed and special benchmark examples are presented for illustrative purposes.
The corresponding lower bounds are proposed in Section 4. In Section 5 we discuss some open questions and present
a short selection of applied work that motivated our investigation. Finally, all proofs and technical arguments are
gathered in the Appendix.

Throughout the paper we set the following notations. For all x, y ∈ R, δx(y) = 1 if x = y and δx(y) = 0 if x 	= y.
Also, x ∧y := min{x, y} and x ∨y := max{x, y}. Given two sequences (cj )j∈N and (dj )j∈N of real numbers, cj ∼ dj

means that there exists 0 < κ0 ≤ κ1 < ∞ such that κ0 ≤ cj /dj ≤ κ1 for all j ∈N. Let ν be either ε or σ or (ε, σ ), and
let V be either R+ := (0,+∞) or R+ × R

+. Given two collections (cν)ν∈V and (dν)ν∈V of positive real numbers,
cν � dν means that there exists 0 < κ0 < +∞ such that cν ≥ κ0 dν for all ν ∈ V . Similarly, cν � dν means that there
exists 0 < κ1 < +∞ such that cν ≤ κ1 dν for all ν ∈ V .

2. Minimax goodness-of-fit testing

2.1. The statistical setting

Given observations (Y,X) = {(Yj ,Xj )}j∈N from the GSM (1.1), the aim is to compare the underlying (unknown)
signal θ ∈ l2(N) to a (known) benchmark signal θ0, i.e., to test

H0 : θ = θ0 versus H1 : θ − θ0 ∈F, (2.1)

for some given θ0 and a given subspace F . The statistical setting (2.1) is known as goodness-of-fit testing when θ0 	= 0
or signal detection when θ0 = 0.

Remark 2.1. Given observations from the GWNM (1.2), the testing problem (2.1) is related to the test

H0 : f = f0 versus H1 : f − f0 ∈ F̃, (2.2)

for a given benchmark function f0 and a given subspace F̃ . In most cases, F̃ contains functions f ∈ L2([0,1]) that
admit a Fourier series expansion with Fourier coefficients θ belonging to F (see, e.g., [19], Section 3.2). In these
cases, the tests (2.1) and (2.2) are equivalent.

The choice of the set F is important. Indeed, it should be rich enough in order to contain the true θ . At the same
time, if it is too rich, it will not be possible to control the performances of a given test due to the complexity of the
problem. The common approach for such problems is to impose both a regularity condition (which characterizes the
smoothness of the underlying signal) and an energy condition (which measures the amount of the underlying signal).
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Concerning the regularity condition, we will work with certain ellipsoids in l2(N). In particular, we assume that
θ ∈ Ea(R), the set Ea(R) being defined as

Ea(R) =
{
θ ∈ l2(N),

∑
j∈N

a2
j θ

2
j ≤ R

}
, (2.3)

where a = (aj )j∈N denotes a non-decreasing sequence of positive real numbers with aj → +∞ as j → +∞, and
R > 0 is a constant. The set Ea(R) can be seen as a condition on the decay of θ . The cases where a increases very
fast correspond to θ with a small amount of non-zero coefficients. In such a case, the corresponding signal can be
considered as being ‘smooth.’ Without loss of generality, in what follows, we set R = 1, and write Ea instead of Ea(1).

Regarding the energy condition, it will be measured in the l2(N)-norm. In particular, given rε,σ > 0 (called the
radius), which is allowed to depend on the noise levels ε,σ > 0, we will consider alternatives such that ‖θ −θ0‖ > rε,σ .
Given a smoothness sequence a and a radius rε,σ > 0, the set F can thus be defined as

F := �a(rε,σ ) = {
ν ∈ Ea,‖ν‖ ≥ rε,σ

}
. (2.4)

In other words, the set F is an ellipsoid in l2(N) with a ball of radius rε,σ > 0 removed. In many cases of interest, the
set F provides constraints on the Fourier coefficients of f ∈ L2([0,1]) in the model (1.2) (see, e.g., [19], Section 3.2).

We consider below the hypothesis testing setting (2.1) with θ0 	= 0 (i.e., goodness-of-fit testing). More formally,
given observations from the GSM (1.1), for any given θ0 ∈ Ea \ {0}, we will be dealing with the following goodness-
of-fit testing problem

H0 : θ = θ0 versus H1 : θ − θ0 ∈ �a(rε,σ ), (2.5)

where �a(rε,σ ) is defined in (2.4). The sequence a being fixed, the main issue for the problem (2.5) is then to
characterize the values of rε,σ > 0 for which both hypotheses H0 (called the null hypothesis) and H1 (called the
alternative hypothesis) are ‘separable’ (in a sense which will be made precise later on).

Remark 2.2. We would like to stress at this point that in the standard GSM (i.e., (1.1) with σ = 0), signal detection
(i.e., θ0 = 0) and goodness-of-fit testing (i.e., θ0 	= 0) problems are equivalent as soon as the involved operator is
injective. Indeed, without loss of generality, we can still replace the observed sequence (Yj )j∈N by (Ỹj )j∈N := (Yj −
bj θ0,j )j∈N. This is no more the case in the GSM (1.1) since the sequence (bj )j∈N is unknown. Signal detection
and goodness-of-fit problems should therefore be treated in a different manner. In this work, we only address the
goodness-of-fit testing problem (2.5).

Remark 2.3. In the same spirit, we point out that the benchmark function θ0 is assumed to belong to Ea \ {0} in the
testing problem (2.5). Such an assumption is not necessary in the classical’ setting where σ = 0. Given observations
from the GSM (1.1), the requirement θ0 ∈ Ea \ {0} allows a sharp control of the additional uncertainty generated by
the noise in the operator. This requirement could be replaced by θ0 ∈ l2(N) \ {0}, leading to the minimax separation
rates described in [18,21] with max(ε, σ ) instead of ε.

In the following, a (non-randomized) test � := �(Y,X) will be defined as a measurable function of the observation
(Y,X) = (Yj ,Xj )j∈N from GSM (1.1) having values in the set {0,1}. By convention, H0 is rejected if � = 1 and H0
is not rejected if � = 0. Then, given a test � , we can investigate

• the first kind (type I) error probability defined as

αε,σ (�) := Pθ0,b(� = 1), (2.6)

which measures the probability to reject H0 when H0 is true (i.e., θ = θ0); it is often constrained as being bounded
by a prescribed level α ∈ ]0,1[, and

• the maximal second kind (type II) error probability defined as

βε,σ

(
�a(rε,σ ),�

) := sup
θ :θ−θ0∈�a(rε,σ )

Pθ,b(� = 0), (2.7)
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which measures the worst possible probability not to reject H0 when H0 is not true (i.e., when θ − θ0 ∈ �a(rε,σ ));
one would like to ensure that it is bounded by a prescribed level β ∈ ]0,1[.
For simplicity in our exposition, we will restrict ourselves to α-level tests, i.e., tests �α satisfying αε,σ (�α) ≤ α,

for any fixed value α ∈ ]0,1[.
Let α,β ∈ ]0,1[ be given, and let �α be an α-level test.

Definition 2.1. The separation radius of the α-level test �α over the class Ea is defined as

rε,σ (Ea,�α,β) := inf
{
rε,σ > 0 : βε,σ

(
�a(rε,σ ),�α

)≤ β
}
,

where the maximal second kind error probability βε,σ (�a(rε,σ ),�α) is defined in (2.7).

In some sense, the separation radius rε,σ (Ea,�α,β) corresponds to the smallest possible value of the available
signal ‖θ − θ0‖ for which H0 and H1 can be ‘separated’ by the α-level test �α with maximal second kind error
probability, bounded by a prescribed level β ∈ ]0,1[.

Definition 2.2. The minimax separation radius r̃ε,σ := r̃ε,σ (Ea,α,β) > 0 over the class Ea is defined as

r̃ε,σ := inf
�̃α :αε,σ (�̃α)≤α

rε,σ (Ea, �̃α,β). (2.8)

The minimax separation radius r̃ε,σ corresponds to the smallest radius rε,σ > 0 such that there exists some α-level
test �̃α for which the maximal second kind error probability βε,σ (�a(rε,σ ), �̃α) is not greater than β .

2.2. Summary of the results

In this section, we present an overview of the main results obtained in the subsequent sections. The main Theorem 2.1
presented bellow combines Theorems 3.1 (upper bound) and Theorem 4.1 (lower bound). Moreover, the minimax rates
displayed in Tables 1 and 2 correspond, respectively, to the minimax rates given in Theorem 3.2 and Theorem 4.2 for
various smoothness and ill-posedness conditions.

We emphasize that the aim of this work is to establish ‘optimal’ separation conditions for the goodness-of-fit testing
problem (2.5). This task requires, in particular, precise (non-asymptotic) controls of the first kind error probability
αε,σ (�α) and the maximal second kind error probability βε,σ (�a(rε,σ ),�α) (of a specific test �α that will be made
precise in Section 3) by prescribed levels α,β ∈ ]0,1[, respectively. Such controls allow us to derive both upper and
lower bounds on the minimax separation radius r̃ε,σ , as summarized in the following theorem.

Table 1
Minimax goodness-of-fit testing with unknown singular values: upper bounds on the minimax separation
radius r̃2

ε,σ for 0 < ε ≤ ε0, ε0 ∈ ]0,1[, and 0 < σ ≤ σ0, σ0 ∈ ]0,1[, for all t, s > 0

Goodness-of-fit Ordinary-smooth Super-smooth
testing problem aj ∼ js aj ∼ exp{js}

Mildly ill-posed ε4s/(2s+2t+1/2) ∨ [σ ln3/4(1/σ)]2[(s/t)∧1] ε2(ln(1/ε))2t+1/2 ∨ σ 2 ln3/2(1/σ)

bj ∼ j−t

Severely ill-posed (ln(1/ε))−2s ∨ [ln(1/σ ln−1/2(1/σ))]−2s ε2s/(s+t) ∨ [σ ln1/2(1/σ)]2[(s/t)∧1]
bj ∼ exp{−j t}



1680 C. Marteau and T. Sapatinas

Table 2
Minimax goodness-of-fit testing with unknown singular values: lower bounds on the
minimax separation radius r̃2

ε,σ for 0 < ε ≤ ε0, ε0 ∈ ]0,1[, and 0 < σ ≤ σ0, σ0 ∈ ]0,1[,
for all t, s > 0

Goodness-of-fit Ordinary smooth Super smooth
testing problem aj ∼ js aj ∼ exp{js}

Mildly ill-posed ε4s/(2s+2t+1/2) ∨ σ 2[(s/t)∧1] ε2(ln ε−1)2t+1/2 ∨ σ 2

bj ∼ j−t

Severely ill-posed (ln(1/ε))−2s ∨ (ln(1/σ))−2s ε2s/(s+t) ∨ σ 2[(s/t)∧1]
bj ∼ exp{−j t}

Theorem 2.1. Let α,β ∈ ]0,1[ be fixed, such that α ≤ β . Consider the goodness-of-fit testing problem (2.5). Then,
there exist explicit positive constants1 C̃(α,β) > 0, Cα,β > 0, cα,β > 0 and σ0 ∈ ]0,1[ such that, for all 0 < σ ≤ σ0
and for each ε > 0,

(i) r̃2
ε,σ ≤ inf

D∈N

[
C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (

7 + 4
√

ln(2/α)
)[

σ 2 ln3/2(1/σ) ∨ a−2
D∧M0

]]
,

and, for all ε,σ > 0,

(ii) r̃2
ε,σ ≥

{
C2

α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]}∨
{

sup
D∈N

[
cα,βε2

√√√√√ D∑
j=1

b−4
j ∧ a−2

D

]}
,

where the bandwidths M0,M1 and M2 depend1 on both (bj )j∈N and σ .

Theorem 2.1 provides a precise description on the behavior of the minimax separation radius r̃ε,σ in terms of the
sequences (aj )j∈N and (bj )j∈N and of the noise levels ε and σ . It is worth pointing out that this control is non-
asymptotic. There is indeed a technical constraint on the value of σ (0 < σ ≤ σ0, σ0 ∈ ]0,1[), but we do not assume
its convergence towards 0, i.e., we work with fixed values of the noise levels ε and σ . We also note that the restriction
α ≤ β on the levels, is only necessary for the upper bound (item (i)): see Propositions 3.2 and 4.2.

Then, we apply the above result on specific problems. Namely, we consider various behaviors for both sequences
(aj )j∈N and (bj )j∈N, and discuss the properties of the associated minimax separation radii r̃ε,σ . Concerning the
eigenvalues (b2

j )j∈N of the operator A	A, we will alternatively consider situations where

bj ∼ j−t or bj ∼ exp(−j t), ∀j ∈ N, for some t > 0.

The first case corresponds to the so-called mildly ill-posed problems while the second one corresponds to severely
ill-posed problems. Concerning the ellipsoids Ea , i.e., the sequence (aj )j∈N, two different kinds of smoothness will
be investigated, namely,

aj ∼ j s or aj ∼ exp(js), ∀j ∈ N, for some s > 0,

the so-called ordinary-smooth and super-smooth cases, respectively. In the above scenarios, we apply Theorem 2.1
and describe the associated upper and lower bounds on the minimax separation radius r̃ε,σ . They are, respectively,
displayed in Table 1 and Table 2.

1For the sake of brevity, these quantities are made precise in the subsequent sections. See, respectively, (3.12), (4.5), (4.11) for the constants

C̃(α,β),C(α,β), c(α,β), and (3.3), (4.4) for the terms M0,M1,M2.
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Table 3
Minimax goodness-of-fit testing with known singular values: the separation rates r̃2

ε for
0 < ε ≤ ε0, ε0 ∈ ]0,1[, for all t, s > 0

Goodness-of-fit Ordinary-smooth Super-smooth
testing problem aj ∼ js aj ∼ exp{js}

Mildly ill-posed ε4s/(2s+2t+1/2) ε2(ln ε−1)2t+1/2

bj ∼ j−t

Severely ill-posed (ln ε−1)−2s ε2s/(s+t)

bj ∼ exp{−j t}

Looking at these tables, both lower and upper bounds coincide in every considered case, up to a logarithmic term
that depends on the noise level σ . Hence, Theorem 2.1 provides a sharp control on the minimax separation radius
r̃ε,σ in various settings. The interesting property of such minimax separation radii is that they have the same structure
whatever the considered situation: a maximum between two terms depending, respectively, on the noise levels ε and σ .
It is also worth pointing out that the first term depending on ε corresponds to the minimax separation radius in the
case where the operator is known (i.e., σ = 0), as displayed in Table 3.

The results displayed in Theorem 2.1 and Tables 1, 2 can also be understood as follows. Two problems are at
hand: detection of the underlying signal (with a minimax separation radius that only depends on ε) and detection
of the ‘frequencies’ j for which the terms bj can be replaced by observations Xj without loss of precision (with a
minimax separation radius that depends only on σ ). The final minimax separation radius is then the maximum of these
two terms, i.e., the signal detection hardness is related to the most difficult underlying problem. We stress that such
phenomenon has already been discussed in the minimax estimation framework, see, e.g., [13,20].

3. Upper bound on the minimax separation radius

In this section, we first propose an α-level testing procedure. Then, we investigate its maximal second kind error
probability and establish a non-asymptotic upper bound on the minimax separation radius (which corresponds to item
(i) of Theorem 2.1). Finally, in Section 3.3, we provide a control of the upper bounds for minimax separation radii for
the specific cases displayed in Table 1.

3.1. The spectral cut-off test

For a given θ0 	= 0, the aim of the goodness-of-fit testing problem (2.5) is to determine whether or not θ = θ0. In
particular, for any given j ∈ N, one would like to infer the corresponding value θj from the observation (Y,X) =
(Yj ,Xj )j∈N from GSM (1.1). Typically, for any given j ∈N, one may use the ‘naive’ estimate θ̂j of θj , defined by

θ̂j := Yj

Xj

= bj

Xj

θj + ε
1

Xj

ξj , j ∈ N.

In order to ensure a ‘good’ approximation of θj by θ̂j (in a sense which will be made precise later on), a precise
control of the ratio bj /Xj is required. To this end, we want to avoid coefficients for which Xj � σ , namely for which
the observation Xj is of the order of the corresponding noise level σ , that does not have ‘discriminatory’ power.
Therefore, we will restrict ourselves to coefficients Xj with indices 1 ≤ j ≤ M , where the bandwidth M is defined by

M := inf
{
j ∈N : |Xj | ≤ σhj

}− 1, (3.1)

where, for all j ∈ N,

hj = 16

√
ln

(
κj2

α

)
+
√

2 ln

(
10

α

)
, (3.2)
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Fig. 1. An illustration of the spatial positions of the bandwidths M0 and M1, defined in (3.3). The decreasing solid curve corresponds to the values
of the sequence b = (bj )j∈N with respect to the index j ∈ N, while the oscillating curve demonstrates one realization of the random sequence
X = (Xj )j∈N according to the GSM (1.1). The increasing dashed curve draws the behavior of the sequence σhj . For the corresponding random
‘bandwidth’ M defined in (3.3), Lemma A.1 shows that M ∈ [M0,M1[ with high probability.

for some κ > exp(1). In some sense, the terms σhj can be hence considered as a threshold for the variables Xj . We
stress that unlike classical thresholding procedures, the terms hj here depend on the level α and allow a control of the
first kind error.

Remark 3.1. The value of κ is, in some sense, related to the value of the first kind error probability of the suggested
testing procedure. We will see below that the value κ = 5(3π2 + 12)/6 is convenient to our purpose. We stress that
κ is not a regularization parameter: an ‘optimal’ value of κ only allows to get ‘optimal’ constants in the final results
but will not change the order of the corresponding minimax separation rates. Finding optimal constants is outside the
scope of this work.

The bandwidth M is a random variable but can be controlled in the sense that M ∈ [M0,M1[ with high probability
(see Lemma A.1 for precise computations and Figure 1 for a graphical illustration), where the bandwidths M0 and M1

are defined by

{
M0 := inf{j ∈N : bj ≤ σh0,j } − 1,

M1 := inf{j ∈N : bj ≤ σh1,j }, (3.3)

and the sequences h0 = (h0,j )j∈N, h1 = (h1,j )j∈N satisfy

h0,j = 18

√
ln

(
κj2

α

)
+
√

2 ln

(
10

α

)
, (3.4)

h1,j = 16

√
ln

(
κj2

α

)
, (3.5)

for all j ∈ N. The sequences h = (hj )j∈N, h0 = (h0,j )j∈N and h1 = (h1,j )j∈N in the definition of M0, M1 and M

allow a ‘uniform’ control of the standard Gaussian sequence η = (ηj )j∈N (associated with X = (Xj )j∈N), for all
1 ≤ j ≤ M1 (see Lemmas A.1, A.2 and A.3 in the Appendix).
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We are now in the position to construct a (spectral cut-off) testing procedure. According to the methodology
proposed earlier in the literature (see, e.g., [1,19] or [23]), our test will be based on an estimation of ‖θ − θ0‖2. For
any fixed D ∈ N, consider the test statistic

TD,M :=
D∧M∑
j=1

(
Yj

Xj

− θj,0

)2

. (3.6)

Given a prescribed level α ∈ ]0,1[ for the first kind error probability, the associated spectral cut-off test is then defined
as

�D,M := 1{TD,M>t1−α,D(X)}, (3.7)

where

t1−α,D(X) := ε2
D∧M∑
j=1

X−2
j + C(α)ε2

√√√√√D∧M∑
j=1

X−4
j + (1 + √

xα/2)
[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]
, (3.8)

and

C(α) = 3
√

xα/2 + 2xα/2 > 0, xγ := ln(1/γ ) ∀γ ∈ ]0,1[. (3.9)

In other words, if the ‘estimator’ TD,M of ‖θ − θ0‖2 is greater than the random threshold t1−α,D(X), θ and θ0 are very
unlikely to be close to each other, and we will reject H0.

Remark 3.2. Under H0, Yj = bj θj,0 + εξj , j ∈ N, and, hence,

TD,M =
D∧M∑
j=1

[(
bj

Xj

− 1

)
θj,0 + εX−1

j ξj

]2

.

Therefore, the law of TD,M is not available and, thus, its corresponding (1−α)-quantile is not computable in practice,
since the sequence b = (bj )j∈N is unknown. However, Proposition 3.1 below ensures that the threshold t1−α,D(X)

defined in (3.8) provides a computable upper bound on this quantile.

First, we focus on the first kind error probability. The following proposition states that the spectral cut-off test
�D,M defined in (3.7)–(3.8), is an α-level test.

Proposition 3.1. Let α ∈ ]0,1[ be fixed. Consider the goodness-of-fit testing problem (2.5). Then, setting κ = 5(3π2 +
12)/6, there exists σ0 ∈ ]0,1[ such that, for all 0 < σ ≤ σ0 and for each ε > 0, the spectral cut-off test �D,M , defined
in (3.7)–(3.8), is an α-level test, i.e.,

αε,σ (�D,M) ≤ α. (3.10)

The proof is postponed to Section A.2.1.

Remark 3.3. In order to shed light on the term σ0, we provide bellow a heuristic argument. Note that, under H0,
thanks to a (rough) Taylor expansion,

TD,M �
D∧M∑
j=1

[
εb−1

j ξj + σb−1
j θj,0ηj

]2
.

Compared to the ‘noise-free’ case (i.e., σ = 0), we have in some sense to deal with the additional term σb−1
j θj,0ηj .

Two scenarios are at hand
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• If supj b−1
j a−1

j ≤ C0, the expected amount of additional signal is

σ 2
D∧M∑
j=1

b−2
j θ2

j ≤ σ 2C0‖θ‖2,

which is of the order of the classical parametric rate σ 2. However, since C0 is unknown, we use a rough standard
deviation control on this additional term, which requires a logarithmic term (i.e., ln3/2(1/σ)) in the right hand side
of (3.8). We stress that this logarithmic term can be removed if the knowledge of C0 is assumed.

• If supj b−1
j a−1

j > C0, we can prove that σb−1
j ηj (see Lemma A.4) is bounded with controlled probability, according

to the construction of the bandwidth M given in (3.1). In such case, the additional term can be controlled by the
‘bias’ a−2

D∧M .

Due to the additional logarithmic term mentioned above, the first kind error probability can be controlled as soon
as σ is small enough (i.e., 0 < σ ≤ σ0 for some σ0 ∈ ]0,1[). Unsurprisingly, it is impossible to retrieve any kind of
information on the observations if the noise level σ is too large.

3.2. A non-asymptotic upper bound

We now turn our attention to the maximal second error probability. The following proposition provides, for each noise
level ε > 0 and for noise level σ small enough, an upper bound for the separation radius rε,σ (Ea,�D,M,β) of the
spectral cut-off test �D,M defined in (3.6)–(3.8).

Proposition 3.2. Let α,β ∈ ]0,1[ be fixed, such that α ≤ β . Consider the goodness-of-fit testing problem (2.5). Let
�D,M be the spectral cut-off test, defined in (3.7)–(3.8). Then, there exists σ0 ∈ ]0,1[ such that, for all 0 < σ ≤ σ0
and for each ε > 0,

r2
ε,σ (Ea,�D,M,β) ≤ C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]
, (3.11)

where

C̃(α,β) = 16
(
C(α) + 3

√
xβ/2

)
. (3.12)

The proof is postponed to Section A.2.2.
Note that the upper bound on the separation radius r2

ε,σ (Ea,�D,M,β) given in (3.11) depends on two antagonis-

tic terms, namely, ε2
√∑D∧M1

j=1 b−4
j and σ 2 ln3/2(1/σ) ∨ a−2

D∧M0
. Ideally, one would like to make this upper bound

as small as possible, i.e., to obtain the weakest possible condition on ‖θ − θ0‖ such that, for any fixed β ∈ ]0,1[,
βε,σ (�a(rε,σ ),�D,M) ≤ β . Therefore, one would like to select D := D	 such that

D	 := arg min
D∈N

{
C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]}
,

where C̃(α,β) is defined in (3.12). However, this ‘optimal’ bandwith D	 is not available in practice since the sequence
b = (bj )j∈N is not assumed to be known. To this end, we use instead the bandwidth D := D† defined as

D† := arg min
D∈N

{
C̃(α,β)ε2

√√√√√D∧M∑
j=1

X−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}
. (3.13)
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The following theorem illustrates the performances of the corresponding spectral cut-off test �D†,M , defined in (3.7),
with D := D†, defined in (3.13).

Theorem 3.1. Let α,β ∈ ]0,1[ be fixed, such that α ≤ β . Consider the goodness-of-fit testing problem (2.5). Let
�D†,M be the spectral cut-off test, defined in (3.7) with D := D†, defined in (3.13). Then, there exists σ0 ∈ ]0,1[ such
that, for all 0 < σ ≤ σ0 and for each ε > 0,

αε,σ (�D†,M) ≤ α (3.14)

and

r2
ε,σ (Ea,�D†,M,β) ≤ inf

D∈N

[
C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]]
, (3.15)

where the constant C̃(α,β) has been introduced in (3.12).

The proof of Theorem 3.1 is postponed to Section A.2.3.

Remark 3.4. According to Theorem 3.1, given a radius rε,σ > 0, then

r2
ε,σ ≥ inf

D∈N

[
C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]]

⇒ βε,σ

(
�a(rε,σ ),�D†,M

)≤ β,

and, hence,

r̃2
ε,σ ≤ inf

D∈N

[
C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]]
. (3.16)

This upper bound corresponds to item (i) of Theorem 2.1.

Remark 3.5. Although we considered the spectral cut-off test (3.7), we stress that several alternative testing strategies
could be investigated (see, e.g., [23]). Since our aim is to propose an accurate description of the minimax separation
radius/rates associated to the goodness-of-fit problem (2.1), the proposed testing procedure should be considered as
a tool that allows to propose an upper bound. Nevertheless, any testing procedure designed for the goodness-of-fit
testing problem (2.5) depends on the sequence (bk)k∈N. The uncertainty on the operator, however, requires a specific
treatment and cannot be managed by an immediate application of classical procedures (see, e.g., [18]).

3.3. Upper bounds: Specific cases

Our aim in this section is to determine an explicit value (in terms of the noise levels ε and σ ) for the upper bounds on
the minimax separation radius r̃ε,σ obtained in Theorem 3.1 above. To this end, we will consider well-known specific
cases regarding the behavior of both sequences (aj )j∈N and (bj )j∈N. According to the existing literature, we will
essentially deal with mildly and severely ill-posed problems with ellipsoids of ordinary-smooth and super-smooth
functions (see also Section 2.2 for formal definitions).

Theorem 3.2. Consider the goodness-of-fit testing problem (2.5) when observations are given by (1.1), and the signal
of interest has smoothness governed by (2.3).
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(i) If bj ∼ j−t , t > 0, and aj ∼ j s , s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0

and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

4s
2s+2t+1/2 ∨ [

σ ln3/4(1/σ)
]2( s

t
∧1)

.

(ii) If bj ∼ j−t , t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all
0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε2[ln(1/ε)

](2t+ 1
2 ) ∨ σ 2 ln

3
2 (1/σ).

(iii) If bj ∼ exp{−j t}, t > 0, and aj ∼ j s , s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all
0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ �

[
ln(1/ε)

]−2s ∨
[

ln

(
1

σ ln1/2(1/σ)

)]−2s

.

(iv) If bj ∼ exp{−j t}, t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all
0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

2s
s+t ∨ [

σ ln1/2(1/σ)
]2( s

t
∧1)

.

The minimax rates displayed above are summarized in Table 1. The proof is postponed to Section A.3. The main

task is to compute the asymptotic trade-off between both antagonistic terms ε2
√∑D∧M1

j=1 b−4
j and [σ 2 ln3/2(1/σ) ∨

a−2
D∧M0

] in the upper bounds on the minimax separation radius r̃ε,σ displayed in (3.16).

4. Lower bounds on the minimax separation radius

We establish a non-asymptotic lower bound on the minimax separation radius (which corresponds to item (ii) of
Theorem 2.1). In order to do this, we consider two special cases of the GSM (1.1), namely the situations where

(a) ε = 0: the signal is observed without noise but the eigenvalues of the operator at hand are still noisy, and
(b) σ = 0: the ‘classical’ model (see, e.g., [18] or [21]) where the eigenvalues of the operator at hand are known.

Both models (a) and (b) correspond to some ‘extreme’ situations but provide, in some sense, a benchmark for the
problem at hand. We first establish a lower bound for the case (a) in Section 4.1 and recall the lower bound for the
case (b) (that has already been discussed in, e.g., [1,21] or [23]) in Section 4.2. Then, we establish in Section 4.3 that
the minimax separation radius associated to goodness-of-fit testing problem (2.5) is always greater than the maximum
of the minimax separation radii associated to the cases (a) and (b). Finally, in Section 4.4, we provide a control of the
lower bounds for minimax separation radii for the specific cases displayed in Table 2.

4.1. Lower bounds for a GSM with ε = 0

We consider the GSM (1.1) with b = b̄ and ε = 0, i.e.,{
Yj = b̄j θj , j ∈N,
Xj = b̄j + σηj , j ∈N.

(4.1)

For a given sequence b = (b)j∈N, define

B(b) = {
ν ∈ l2(N) : C0|bj | ≤ |νj | ≤ C1|bj |, j ∈ N,0 < C0 ≤ 1 ≤ C1 < +∞}

.
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Given observations from the GSM (4.1), for any given θ0 ∈ Ea \ {0} and b̄ ∈ B(b), we consider the following
goodness-of-fit testing problem

H0 : θ = θ0 versus H1 : θ − θ0 ∈ �a(rσ ), b̄ ∈ B(b), (4.2)

where �a(rσ ) = {μ ∈ Ea,‖μ‖ ≥ rσ }.
Our aim below is to provide a lower bound on the minimax separation radius r̃0,σ , defined as

r̃0,σ := inf
�̃α :α0,σ (�̃α)≤α

r0,σ (Ea, �̃α,β),

where r0,σ (Ea,�α,β) is the separation radius of any given α-level test �α , defined as

r0,σ (Ea,�α,β) := inf
{
rσ > 0 : β0,σ,b

(
�a(rσ ),B(b),�α

)≤ β
}
,

and β0,σ,b(�(rσ ),B(b),�α) is the associated maximal second kind error probability, defined as

β0,σ,b

(
�(rσ ),B(b),�α

) := sup
θ :θ−θ0∈�a(rσ )

b̄∈B(b)

Pθ,b̄(�α = 0).

The following proposition states a lower bound for the minimax separation radius r̃0,σ of the goodness-of-fit testing
problem (4.2).

Proposition 4.1. Assume that (Y,X) = (Yj ,Xj )j∈N are observations from the GSM (4.1) and consider the goodness-
of-fit testing problem (4.2). Let α ∈ ]0,1[ and β ∈ ]0,1 − α[ be given. Then, for every σ > 0, the minimax separation
radius r̃0,σ is lower bounded by

r̃0,σ ≥ Cα,β

2
σ max

1≤D≤M2

[
b−1
D a−1

D

]
, (4.3)

where

M2 := sup

{
D ∈ N : Cα,βσb−1

D ≤ 1 and GD(C0,C1) ≥ 1 − 1

2
(1 − α − β)

}
(4.4)

with

Cα,β = ln
(
1 + (1 − α − β)2)> 0 and GD(C0,C1) = 1

σ
√

2π

∫ C1bD

C0bD

exp

{
− 1

2σ 2
(t − bD)2

}
dt, (4.5)

for some constants 0 < C0 ≤ 1 ≤ C1 < +∞.

The proof is postponed to Section A.4.1.

Remark 4.1. Note that

GD(C0,C1) = �

(
(C1 − 1)

bD

σ

)
− �

(
(C0 − 1)

bD

σ

)
,

where �(·) is the cumulative distribution function of the standard Gaussian distribution. Hence,

GD(C0,C1) ≥ 1 − 1

2
(1 − α − β) ⇔ bD ≥ σK,

where K := K(C0,C1, α,β) > 0. Then M2 in (4.4) can be re-expressed as

M2 := sup
{
D ∈ N : bD ≥ σ [K ∨ Cα,β ]}. (4.6)

This expression M2 in (4.6) can be compared to the respective expressions of M0 and M1 defined in (3.3). In particular,
we point-out that there is no logarithmic term involved in M2.
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4.2. Lower bounds for the GSM when σ = 0

We consider the GSM (1.1) with σ = 0, i.e.,{
Yj = bj θj + εξj , j ∈N,
Xj = bj , j ∈N. (4.7)

Note that, in this case, the above model can be re-expressed as

Yj = bj θj + εξj , j ∈N, (4.8)

where b = (bj )j∈N is a known positive sequence.
The following proposition states a lower bound for the minimax separation radius r̃ε,0, defined in (2.2) with σ = 0,

of the following goodness-of-fit testing problem

H0 : θ = θ0 versus H1 : θ − θ0 ∈ �a(rε,0), (4.9)

where θ0 ∈ Ea \ {0} and �a(rε,0) is defined in (2.4) with σ = 0.

Proposition 4.2. Assume that Y = (Yj )j∈N are observations from the GSM (4.8) and consider the goodness-of-fit
testing problem (4.9). Let α ∈ ]0,1[ and β ∈ ]0,1 −α[ be given. Then, for every ε > 0, the minimax separation radius
r̃ε,0 is lower bounded by

r̃2
ε,0 ≥ sup

D∈N

[
cα,βε2

√√√√√ D∑
j=1

b−4
j ∧ a−2

D

]
, (4.10)

where

cα,β = (
2 ln

(
1 + 4(1 − α − β)2))1/4

> 0. (4.11)

The proof of the Proposition 4.2 with detailed arguments are related discussion can be found in e.g., [1,21] and
[23].

4.3. A combined lower bound

The following result provides a lower bound on the minimax separation radius r̃ε,σ for the goodness-of-fit testing
problem (2.5). This lower bound corresponds to item (ii) of Theorem 2.1.

Theorem 4.1. Consider the GSMs (1.1), (4.1) and (4.7). Denote by r̃ε,σ , r̃0,σ and r̃ε,0 the corresponding minimax
separation radii. Then, for every ε > 0 and σ > 0,

r̃ε,σ ≥ r̃0,σ ∨ r̃ε,0. (4.12)

In particular,

r̃2
ε,σ ≥

{
C2

α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]}∨
{

sup
D∈N

[
cα,βε2

√√√√√ D∑
j=1

b−4
j ∧ a−2

D

]}
, (4.13)

where Cα,β is given in (4.5), M2 is given in (4.4) and cα,β is given in (4.11).

The proof of Theorem 4.1 is postponed to Section A.4.2.
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Remark 4.2. At a first sight, the upper and lower bounds respectively displayed in (i) and (ii) of Theorem 2.1 do not
exactly match up. However, a closer look at the involved formulas indicates that both quantities contain terms that
have similar behaviors. This is, in some sense, confirmed in Section 4.4 below where specific sequences (aj )j∈N and
(bj )j∈N are treated.

4.4. Lower bounds: Specific cases

Our aim in this section is to determine an explicit value (in terms of the noise levels ε and σ ) for the lower bounds
on the minimax separation radius r̃ε,σ obtained in Theorem 4.1 above for the specific sequences (aj )j∈N and (bj )j∈N
considered in Section 3.3.

Theorem 4.2. Consider the goodness-of-fit testing problem (2.5) when observations are given by (1.1), and the signal
of interest has smoothness governed by (2.3).

(i) If bj ∼ j−t , t > 0, and aj ∼ j s , s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0
and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

4s
2s+2t+1/2 ∨ σ 2( s

t
∧1).

(ii) If bj ∼ j−t , t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all
0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε2[ln(1/ε)

](2t+ 1
2 ) ∨ σ 2.

(iii) If bj ∼ exp{−j t}, t > 0, and aj ∼ j s , s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all
0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ �

[
ln(1/ε)

]−2s ∨ [
ln(1/σ)

]−2s
.

(iv) If bj ∼ exp{−j t}, t > 0, and aj ∼ exp{js}, s > 0, for all j ∈ N, then, there exist ε0, σ0 ∈ ]0,1[ such that, for all
0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

2s
s+t ∨ σ 2( s

t
∧1).

The minimax rates displayed above are summarized in Table 2. The proof is postponed to Section A.5. As in the
case of the upper bound, the main task is to compute the trade-off between both different antagonistic terms involved
in the lower bound on the minimax separation radius r̃ε,σ displayed in (4.13).

5. Concluding remarks

5.1. Theoretical outcomes

The main conclusion of this work is that goodness-of-fit testing in an inverse problem setting is ‘feasible,’ even in the
specific situation where some uncertainty is observed on the operator at hand in the GSM (1.1). We have established
‘optimal’ separation conditions for the goodness-of-fit testing problem (2.5) via a sharp control of the associated
minimax separation radius.

We stress that several outcomes and open questions are still of interest. We can mention, among others:

• Adaptivity: As proved in Theorem 3.1, the test �D†,M introduced in (3.6)–(3.9) with D† defined in (3.13) is pow-
erful in the sense that its separation radius is equal (up to constant) to the minimax one. However, this test strongly
depends on the sequence a = (aj )j∈N that characterizes the smoothness of the signal of interest. In practice, this
sequence is unknown and adaptive procedures are necessary. A classical way to proceed to this adaptation step is
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to build an α-level test �α,D for each candidate D in a given set D. Then, one define the adaptive (Bonferroni type)
test �	

α as

�	
α = max

D∈D
�

α, D
#D

,

where #D denotes the cardinality of the set D. It can be proved that, provided the set D is well-chosen, the test �	
α

is of level α and attains the minimax rate, up to an additional logarithmic term. We refer to, e.g., [19] or [18] for
more details on adaptation (in the GSM (1.1) with σ = 0).

• Non-Gaussian models: In the GSM (1.1), the observations are assumed to be Gaussian. However, it may sometimes
be of practical (or mathematical) interest to consider alternative distributions. The upper bounds obtained earlier are
established using a sharp control on the deviation of the sum of independent squared Gaussian random variables,
see Lemma A.4. The main ingredients for the proof of this lemma are refined computations and control of the
Laplace transform of such variables (see, e.g., [4,21,22]). We conjecture that such a lemma could be generalized to
alternative distributions. On the other hand, the Gaussian structure of the measurements is at the heart of the lower
bounds proposed above. Proposing lower bounds with generic conditions on the noise distributions appears to be
more challenging.

• Signal detection: We have already mentioned in Remark 2.2 that signal detection is different from goodness-of-fit
testing (2.5) when the GSM (1.1) is at hand. In this work, we were concerned with the case where θ0 	= 0 (goodness-
of-fit testing). However, some attention should also be paid in the future to the case where θ0 = 0 (signal detection).
In particular, testing methodologies and related minimax separation radii are quite different from those presented
above.

All these topics require special attention that is beyond the scope of this paper. Nevertheless, they provide an avenue
for future research.

5.2. Applied outcomes

As discussed above, minimax testing in an ill-posed inverse problem context has been at the core of several theoretical
investigations over the last decade. In this section, we present a short selection of applied examples that involve
goodness-of-fit approaches in an inverse problem setting that motivated our investigation.

Blind deconvolution for ophthalmoscopy
In [25], the authors considered images I following the model

I = O ∗ PSF + N,

where O denotes the object of interest, PSF (not exactly known in practice) the point spread function (which models
deformations of the object of interest) and N represents stochastic noise. In practice, the signal-to-noise ratio is not
very high: one has to find solution in order to improve the quality of the data. A possible way is to gather several
images pointing on the same object and to average them. Nevertheless, one has to be sure that a given image can be
added to the existing sample.

Such a situation can be modeled as follows: suppose one has at his/her disposal N images, say I1, I2, . . . , IN ,
which correspond to observations on the same object f0. Writing these observations in the frequency domain

Ijk = bkθk,0 + εξjk, j ∈ {1,2, . . . ,N}, k ∈N.

Summing-up over j ∈ {1,2, . . . ,N}, we obtain the average image, say I ′, satisfying in the frequency domain

I ′
k = bkθk,0 + εξ ′

k with ξ ′
k = 1

N

N∑
j=1

ξjk, k ∈N.

Then, one might want to compare a new observed image, say I ′′, to the average image I ′, in order to decide whether
or not it can be included in the sample. In particular, the idea is to determine if a non-expected movement has occurred
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during the acquisition of the data. In other words, one wants to determine whether or not θ = θ0. Provided N is large
enough, one can (in an idealized framework) assume that the noise εξ ′

k has no real influence on the considered task,
and can be thus considered to be equal to 0, in which case we recover the GSM (1.1). A similar discussion is provided
in [5] in a biophotonic imaging setting.

The instrumental variable (IV) regression model
This setting deals with a sample (Yj ,Xj ,Wj )j=1,2,...,n satisfying

Yj = T g(Wj ) + Uj , j ∈ {1,2, . . . , n}, (5.1)

where g is an unknown function of interest, Uj are independent and identically distributed random variables such that
E[Uj/Wj ] = 0, and T is an unknown operator that can be estimated using the couples (Xj ,Wj ).

Econometricians have been interested in testing specific values for the unknown function g. For instance, [16]
considered a parametric model. The generalization of our investigations to the this instrumental regression setting
may allow to handle a complete non-parametric framework.

ECG data analysis
In [2], shifted observations are at hand. More precisely, one observes N 1-dimensional signals that can be modeled as
follows

Yj = f (· − τj ) + εξj , j ∈ {1,2, . . . ,N},
where the τj denotes a random sample obtained from a random variable τ having density g. Writing the above
observations in the frequency domain and summing-up over j ∈ {1, . . . ,N}, one gets

Y ′
k = θk

1

N

N∑
j=1

e−2iπkτj + ε√
N

ζk, k ∈N.

The law of large number guarantee that 1
N

∑N
j=1 e−2iπkτj converges to the kth-Fourier coefficient of g. Provided that

g is known, we can then recover θ (see, e.g., [3]).
Now, assume that these N observed signals correspond to ‘normal’ ECG measure for a patient in a good health, or

in a particular period. Then, imagine that given another hearth cycle measurement, one would like to detect a possible
arrhythmic cycle. In this case, we get a new signal Y ′ = f (· − τ ′) + εξ ′, which in the frequency domain is written as

Y ′
k = θ ′

ke
−2iπkτ ′ + εz′

k, k ∈N.

In such case, one might want to test whether or not θ = θ ′. Note, in particular, that the operator at hand (its eigenvalues)
is random.

Errors-in-variables model
Density model with measurement errors have been at the core of several statistical studies in the past decades (see,
e.g., [24] for an overview). Formally, given a sample of independent and identical distributed random variables
(Yj )j=1,2,...,n satisfying

Yj = Xj + εj , j = 1,2, . . . , n,

the aim is to produce some inference on the unknown density of the Xi , denoted by f , the εi corresponding to some
error, with known density η. This appears to be an inverse (deconvolution) problem since the Yi are associated to
the convolved density f ∗ η. In a goodness-of-fit testing task, this model has been discussed in [6] and minimax
separation rates (in the asymptotic minimax testing framework) have been established in various settings. In the
spirit of our contribution, it could be interesting to propose goodness-of-fit testing methods taking into account some
possible uncertainty on the density η at hand.

The above examples are somehow considered in slightly different settings compared to the GSM (1.1) studied in
this paper. However, the related questions might provide an avenue for future research. In any case, determining the
separation rates in these or similar settings will require at some step a careful investigation of the GSM (1.1).
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Appendix: Proofs

A.1. Useful lemmas

The constant C > 0 and 0 < τ < 1 below will vary from place to place.
The following lemma is inspired by Lemma 6.1 of [10].

Lemma A.1. Let M,M0,M1 be defined as in (3.1)–(3.5) where α ∈ ]0,1[ and κ ≥ exp(1) are fixed values. Define the
event

M = {M0 ≤ M < M1}. (A.1)

Then, for any σ ∈ ]0,1[,

P
(
Mc

)≤ α

10
+ απ2

6κ
. (A.2)

Proof. It is easily seen that

P(M ≥ M1) = P

(
M1⋂
j=1

{|Xj | > σhj

})≤ P
(|XM1 | > σhM1

)

≤ P
(|bM1 | + σ |ηM1 | > σhM1

)
≤ P

(|ηM1 | > hM1 − h1,M1

)

= P

(
|ηM1 | >

√
2 ln

(
10

α

))
,

where the sequences (hj )j∈N and (h1,j )j∈N are defined in (3.2) and (3.5) respectively. Using the bound

1√
2π

∫ +∞

x

e− s2
2 ds ≤ 1

x

e− x2
2√

2π
∀x > 0, (A.3)

we get

P(M ≥ M1) ≤ 2√
2π

α

10

1√
2 ln(10/α)

≤ α

10
, (A.4)

since
√

2 ln(10/α) > 1 for all α ∈ ]0,1[. In the same spirit,

P(M < M0) = P

(
M0⋃
j=1

{|Xj | ≤ σhj

})≤
M0∑
j=1

P
(|Xj | ≤ σhj

)

≤
M0∑
j=1

P
(|bj | − σ |ηj | ≤ σhj

)

≤
M0∑
j=1

P
(
σ |ηj | ≥ |bj | − σhj

)

≤
M0∑
j=1

P
(|ηj | ≥ h0,j − hj

)
.
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According to the respective definition of (hj )j∈N, (h0,j )j∈N (see (3.2) and (3.4)), and using again inequality (A.3),
we obtain

P(M ≥ M1) ≤ 2√
2π

M0∑
j=1

1

h0,j − hj

exp

{
−1

2
(h0,j − hj )

2
}

≤ 2√
2π

M0∑
j=1

1

2
√

ln(
κj2

α
)

α

κj2

≤ α

κ

∑
j∈N

1

j2
= απ2

6κ
, (A.5)

on noting that
∑

j∈N 1
j2 = π2/6. Since

P
(
Mc

)≤ P(M < M0) + P(M ≥ M1),

the lemma follows, thanks to (A.4) and (A.5). �

Lemma A.2. Let M be defined as in (3.1) and (3.4) where α ∈ ]0,1[ and κ ≥ exp(1) are fixed values. Define the event

B =
M⋂

j=1

{
σ |ηj | ≤ bj

2

}
. (A.6)

Then, for any σ ∈ ]0,1[

P
(
Bc
)≤ α

10
+ απ2

3κ
. (A.7)

Proof. Using the definitions of M and M1, simple calculations give

P
(
Bc

) = P
(
Bc ∩M

)+ P
(
Bc ∩Mc

)

≤ P

(
M1−1⋃
j=1

{
σ |ηj | > bj

2

})
+ P

(
Mc

)

≤
M1−1∑
j=1

P

(
|ηj | > 1

2
h1,j

)
+ P

(
Mc

)
.

Using (3.5), Lemma A.1 and (A.3), we obtain

P
(
Bc

)≤ 2√
2π

M1∑
j=1

1√
82 ln(

κj2

α
)

α

κj2
+ α

10
+ απ2

6κ
≤ α

10
+ απ2

3κ
. (A.8)

Hence, the lemma holds true. �

Lemma A.3. Let θ ∈ Ea be given. Let M be defined as in (3.1) and (3.4) where α ∈ ]0,1[ and κ ≥ exp(1) are fixed
values. Then, for any σ ∈ ]0,1[ and for any D ∈ N,

P

(
D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j ≥ σ 2 ln3/2(1/σ) ∨ a−2

D∧M

)
≤ α

5
+ α

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}
,

for some C > 0 and 0 < τ < 1.
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Proof. Using Lemma A.1, Lemma A.2 and a Taylor expansion as in Lemma 6.6 of [10], we get, for all j ≤ M ,

bj

Xj

= 1

1 + σb−1
j ηj

= 1 − σb−1
j ηj + σ 2ζ−2

j η2
j ,

where ζ−1
j ≤ 8b−1

j on the even B defined in (A.6). Hence

P

(
D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j ≥ σ 2 ln3/2(1/σ) ∨ a−2

D∧M

)

= P

(
D∧M∑
j=1

(−σb−1
j ηj + σ 2ζ−2

j η2
j

)2
θ2
j ≥ σ 2 ln3/2(1/σ) ∨ a−2

D∧M

)

≤ P

(
2σ 2

D∧M∑
j=1

b−2
j θ2

j η2
j + 2σ 4

D∧M∑
j=1

ζ−4
j θ2

j η4
j ≥ σ 2 ln3/2(1/σ) ∨ a−2

D∧M

)
.

Therefore

P

(
D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j ≥ σ 2 ln3/2(1/σ) ∨ a−2

D∧M

)

≤ P

({
2σ 2

D∧M∑
j=1

b−2
j θ2

j η2
j ≥ 1

2

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}∩ (B ∩M)

)

+ P

({
2σ 4

D∧M∑
j=1

ζ−4
j θ2

j η4
j ≥ 1

2

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}∩ (B ∩M)

)
+ P

(
(B ∩M)c

)

:= T1 + T2 + P
(
(B ∩M)c

)
. (A.9)

We concentrate bellow our attention on the term T1 defined as

T1 := P

({
2σ 2

D∧M∑
j=1

b−2
j θ2

j η2
j ≥ 1

2

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}∩ (B ∩M)

)
.

We consider the two following possible scenarios: (i) a−1
j b−1

j ≤ C0 as j → +∞, for some C0 > 0, and (ii) a−1
j b−1

j →
+∞ as j → +∞.

Consider first scenario (i). Then, using again (A.3)

T1 ≤ P

({
2σ 2 max

1≤j≤D∧M

(
b−2
j a−2

j η2
j

)≥ 1

2

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}∩ (B ∩M)

)

≤ P

({
2C2

0σ 2 max
1≤j≤D∧M

(
η2

j

)≥ 1

2
σ 2 ln3/2(1/σ)

}
∩ (B ∩M)

)

≤
M1−1∑
j=1

P

(
|ηj | ≥ 1

2C0
ln3/4(1/σ)

)

≤ 2M1√
2π

2C0

ln3/4(1/σ)
exp

(
− ln3/2(1/σ)

8C2
0

)
≤ C exp

{− ln1+τ (1/σ)
}
, (A.10)

for some constants C,τ ∈ R
+. A similar bound occurs for the term T2 for this scenario.
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Consider now the second scenario (ii). Then

T1 ≤ P

({
2b−2

D∧Ma−2
D∧Mσ 2 max

1≤j≤D∧M

(
η2

j

)≥ 1

2
a−2
D∧M

}
∩ (B ∩M)

)

≤ P

({
σ 2 max

1≤j≤D∧M

(
η2

j

)≥ 1

4
b2
D∧M

}
∩ (B ∩M)

)

≤
M1−1∑
j=1

P

(
σ 2η2

j ≥ 1

4
b2
M1−1

)
,

since the sequence (bj )j∈N is non-increasing. Using (A.3), we get

T1 ≤
M1−1∑
j=1

P

(
|ηj | ≥ 1

2
h1,M1−1

)

≤ 2M1√
2π

2

h1,M1−1
exp

(
−h2

1,M1−1

8

)

≤ M1 exp

(
− ln

(
κM2

1

α

))

≤ M1 × α

κM2
1

≤ α

κ
. (A.11)

By similar computations, we get

T2 := P

({
2σ 4

D∧M∑
j=1

ζ−4
j θ2

j η4
j ≥ 1

2
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

}
∩ (B ∩M)

)

≤ P

({
2 × 84σ 4

D∧M∑
j=1

b−4
j θ2

j η4
j ≥ 1

2
a−2
D∧M

}
∩ (B ∩M)

)

≤ P

({
2 × 84σ 4 max

j=1,...,D∧M
η4

j ≥ 1

2
b4
D∧M

}
∩ (B ∩M)

)

≤
M1−1∑
j=1

P

(
|ηj | ≥ 1

8
√

2
h1,M1−1

)

≤ 2√
2π

8
√

2M1

h1,M1

exp

(
− 1

4 × 82
4 × 82 ln

(
κM2

1

α

))
≤ α

κ
. (A.12)

Hence, the lemma follows from Lemmas A.1, A.2 and (A.9)–(A.12). �

Lemma A.4. Let

Zj = νj + vjωj , j ∈ N,

where ω = (ωj )j∈N is a sequence of independent standard Gaussian random variables, and (νj )j∈N, (vj )j∈N denote
two given real sequences. For all D ∈ N, define

T =
D∑

j=1

Z2
j and � =

D∑
j=1

v4
j + 2

D∑
j=1

v2
j ν

2
j .
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Then, for all x > 0,

P

(
T −E(T ) > 2

√
�x + 2x sup

1≤j≤D

(
v2
j

))≤ exp(−x), (A.13)

P
(
T −E(T ) < −2

√
�x

)≤ exp(−x). (A.14)

Proof. The proof is given in Lemma 2 of [21]. �

A.2. Non-asymptotic upper bounds

A.2.1. Proof of Proposition 3.1
By definition,

αε,σ (�D,M) := Pθ0,b(�D,M = 1) = Pθ0,b

(
TD,M > t1−α,D(X)

)
.

Conditionally to the sequence X = (Xj )j∈N, for each 1 ≤ j ≤ D ∧ M , the random variable X−1
j Yj − θj,0 is Gaussian

with mean νj = (bj /Xj − 1)θj,0 and standard deviation vj = εX−1
j . In particular, for all D ∈ N

Eθ0,b(TD,M | X) := Eθ0,b

[
D∧M∑
j=1

(
Yj

Xj

− θj,0

)2 ∣∣∣X
]

=
D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j,0 + ε2

D∧M∑
j=1

X−2
j . (A.15)

For all D ∈N, define

�D,M := ε4
D∧M∑
j=1

X−4
j + ε2

D∧M∑
j=1

X−2
j

(
bj

Xj

− 1

)2

θ2
j,0.

Applying Lemma A.4 with T = TD,M , � = �D,M and x = xα/2 := ln(2/α), we get

Pθ0,b

(
TD,M −Eθ0(TD,M | X) > 2

√
�D,Mxα/2 + 2ε2xα/2 max

1≤j≤D∧M

(
X−2

j

) | X
)

≤ α

2
. (A.16)

Using the inequalities
√

a + b ≤ √
a + √

b and ab ≤ a2/2 + b2/2 for a, b > 0, it is easily seen that

√
�D,M ≤ ε2

√√√√√D∧M∑
j=1

X−4
j +

√√√√√ε2
D∧M∑
j=1

X−2
j

(
bj

Xj

− 1

)2

θ2
j,0

≤ ε2

√√√√√D∧M∑
j=1

X−4
j +

√√√√√ε2 max
1≤j≤D∧M

X−2
j

D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j,0

≤ ε2

√√√√√D∧M∑
j=1

X−4
j + 1

2
ε2 max

1≤j≤D∧M
X−2

j + 1

2

D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j,0. (A.17)

According to (A.15)–(A.17), we obtain the following bound

Pθ0,b

(
TD,M > (1 + √

xα/2)

D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j,0 + ε2

D∧M∑
j=1

X−2
j + C(α)ε2

√√√√√D∧M∑
j=1

X−4
j

∣∣∣X
)

≤ α

2
,
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where the constant C(α) is defined in (3.9). Since E[E(V | W)] = E(V ) for any random variables V and W , the
previous inequality leads to

Pθ0,b

(
TD,M > (1 + √

xα/2)

D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j,0 + ε2

D∧M∑
j=1

X−2
j + C(α)ε2

√√√√√D∧M∑
j=1

X−4
j

)
≤ α

2
.

Then, by defining

A=
{

D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j,0 < σ 2 ln3/2(1/σ) ∨ a−2

D∧M

}
,

and applying Lemma A.3, we immediately get

αε,σ (�D,M) ≤ Pθ0,b

({
TD,M > t1−α,D(X)

}∩A
)+ P

(
Ac

)
≤ α

2
+ α

5
+ α

6κ

(
3π2 + 12

)+ C exp
{− ln1+τ (1/σ)

}

= 7α

10
+ α

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}
,

for some C > 0 and 0 < τ < 1. In particular, setting

κ = 5

(
π2

2
+ 2

)
,

there exists σ0 ∈ ]0,1[ such that, for all σ ≤ σ0 and for each ε > 0,

αε,σ (�D,M) ≤ α.

This concludes the proof of the proposition.

A.2.2. Proof of Proposition 3.2
Let θ, θ0 ∈ Ea and θ − θ0 ∈ �a(rε,σ ). Then

Pθ,b(�D,M = 0) = Pθ,b

({�D,M = 0} ∩ (B ∩M)
)+ Pθ,b

({�D,M = 0} ∩ (B ∩M)c
) := T1 + T2. (A.18)

Control of T2: Using Lemma A.1, Lemma A.2 and elementary probabilistic arguments, we get

T2 := Pθ,b

({�D,M = 0} ∩ (B ∩M)c
)≤ P

(
(B ∩M)c

)
≤ P

(
Bc

)+ P
(
Mc

)
≤ α

5
+ α

κ

(
π2

2
+ 2

)
≤ β

5
+ β

κ

(
π2

2
+ 2

)
, (A.19)

since β > α.
Control of T1: Define tβ/2,D(θ,X) to be the β/2-quantile of TD,M , conditionally on X, i.e.,

Pθ,b

(
TD,M ≤ tβ/2,D(θ,X) | X)≤ β

2
.

Then, by elementary probabilistic arguments, we get

T1 := Pθ,b

({�D,M = 0} ∩ {B ∩M})
= E

[
Pθ,b

({�D,M = 0} | X)
1{B ∩M}]
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= E
[
Pθ,b

(
TD,M ≤ t1−α,D(X) | X)

1{B ∩M}]
≤ β

2
E
[
1
{
t1−α,D(X) ≤ tβ/2,D(θ,X)

}
1{B ∩M}]

+E
[
1
{
t1−α,D(X) > tβ/2,D(θ,X)

}
1{B ∩M}]

≤ β

2
+E

[
1
{
t1−α,D(X) > tβ/2,D(θ,X)

}
1{B ∩M}]

≤ β

2
+ Pθ,b

({
t1−α,D(X) > tβ/2,D(θ,X)

}∩ {B ∩M}). (A.20)

Our next task is to provide a lower bound for tβ/2,D(θ,X). Under H1, conditionally to the sequence X = (Xj )j∈N, for
each 1 ≤ j ≤ D∧M , the random variable X−1

j Yj −θj,0 is Gaussian with mean νj and standard deviation vj defined as

νj =
(

bj

Xj

− 1

)
θj + (θj − θj,0) and vj = εX−1

j .

In particular,

Eθ,b(TD,M | X) =
D∧M∑
j=1

[(
bj

Xj

− 1

)
θj + (θj − θj,0)

]2

+ ε2
D∧M∑
j=1

X−2
j

=
D∧M∑
j=1

ν2
j + ε2

D∧M∑
j=1

X−2
j . (A.21)

Let

�̃D,M := ε4
D∧M∑
j=1

X−4
j + ε2

D∧M∑
j=1

X−2
j

[(
bj

Xj

− 1

)
θj + (θj − θj,0)

]2

= ε4
D∧M∑
j=1

X−4
j + ε2

D∧M∑
j=1

X−2
j ν2

j . (A.22)

Using Lemma A.4 with T = TD,M , � = �̃D,M and x = xβ/2 := ln(2/β), we obtain

Pθ,b

(
TD,M <

D∧M∑
j=1

ν2
j + ε2

D∧M∑
j=1

X−2
j − 2

√
�̃D,Mxβ/2 | X

)
≤ β

2

⇒ tβ/2,D(θ,X) ≥
D∧M∑
j=1

ν2
j + ε2

D∧M∑
j=1

X−2
j − 2

√
�̃D,Mxβ/2. (A.23)

Therefore, using (3.8) and (A.23), we get

Pθ,b

({
t1−α,D(X) > tβ/2,D(θ,X)

}∩ {B ∩M})

≤ Pθ,b

({
D∧M∑
j=1

ν2
j <

(
C(α) + 2

√
xβ/2

)
ε2

√√√√√D∧M∑
j=1

X−4
j
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+ (1 + √
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]+ 2
√

xβ/2

√√√√√ε2
D∧M∑
j=1

X−2
j ν2

j

}
∩ {B ∩M}

)

≤ Pθ,b

({
1

2

D∧M∑
j=1

ν2
j < C(α,β)ε2

√√√√√D∧M∑
j=1

X−4
j + (1 + √

xα/2)
[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}∩ {B ∩M}
)

,

where

C(α,β) := C(α) + 3
√

xβ/2, (A.24)

and C(α) is defined in (3.9). Note that, for any a, b ∈ R, using the Young inequality 2ab ≤ γ a2 + γ −1b2 for γ = 1/2
we get (a + b)2 ≥ a2/2 − b2. Applying the latter inequality with

a = θj − θj,0, b =
(

bj

Xj

− 1

)
θj , j = 1, . . . ,D ∧ M,

and using Lemma A.3, we arrive at

Pθ,b

({
t1−α,D(X) > tβ/2,D(θ,X)

}∩ {B ∩M})

≤ Pθ,b

({
D∧M∑
j=1

(θj − θj,0)
2 < 4C(α,β)ε2

√√√√√D∧M∑
j=1

X−4
j

+ 4(1 + √
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]+ 2
D∧M∑
j=1

(
bj

Xj

− 1

)2

θ2
j

}
∩ {B ∩M}

)

≤ Pθ,b

({
D∧M∑
j=1

(θj − θj,0)
2 < 4C(α,β)ε2

√√√√√D∧M∑
j=1

X−4
j

+ (6 + 4
√

xα/2)
[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}∩ {B ∩M}
)

+ α

5
+ α

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}
.

Using the fact that θ ∈ Ea , we get

Pθ,b

({
t1−α,D(X) > tβ/2,D(θ,X)

}∩ {B ∩M})

≤ Pθ,b

({
‖θ − θ0‖2 < 4C(α,β)ε2

√√√√√D∧M∑
j=1

X−4
j

+ (6 + 4
√

xα/2)
[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]+
∑

j>D∧M

(θj − θj,0)
2

}
∩ {B ∩M}

)

+ α

5
+ α

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}
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≤ Pθ,b

({
‖θ − θ0‖2 < 4C(α,β)ε2

√√√√√D∧M∑
j=1

X−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M

]}∩ {B ∩M}
)

+ α

5
+ α

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}
. (A.25)

To conclude the proof, note that on the event {B ∩M}, we have

M0 ≤ M < M1 and
bj

Xj

∈
[

2

3
,2

]
∀j = 1, . . . ,M. (A.26)

Hence, using (A.25) and (A.26)

Pθ,b

({
t1−α,D(X) > tβ/2,D(θ,X)

}∩ {B ∩M})

≤ Pθ,b

(
‖θ − θ0‖2 < 16C(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

])

+ α

5
+ α

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}

= α

5
+ α

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}
,

as soon as

‖θ − θ0‖2 ≥ C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]
, (A.27)

where C̃(α,β) = 16C(α,β) is defined in (3.12). Therefore, for any fixed β ∈ ]α,1[, (A.27) implies that, there exists
σ0 ∈ ]0,1[ such that, for all 0 < σ < σ0 and for each ε > 0,

Pθ,b(�D,M = 0) ≤ 7β

10
+ β

κ

(
π2

2
+ 2

)
+ C exp

{− ln1+τ (1/σ)
}≤ β,

for some C > 0 and 0 < τ < 1, which, in turn, implies that (3.11) holds true. The last part of the theorem is a direct
consequence of (2.7) and (3.11). This completes the proof of the proposition.

A.2.3. Proof of Theorem 3.1
The validity of (3.14) can be immediately derived from Proposition 3.1 taking into account that Lemma A.3 is still
valid with D := D† (that depends on the sequence X = (Xj )j∈N). For the proof of (3.11), note first that (A.18), (A.19)
and (A.20) still holds true with D := D†. In the same spirit, it is easy to see that Lemma A.3 is still valid when the
bandwidth D is measurable with respect to the sequence (Xk)k∈N. Hence, the same inequality than (A.25) can be
obtained with D := D†, namely

Pθ,b

({
t1−α,D†(X) > tβ/2,D†(θ,X)

}∩ {B ∩M})

≤ Pθ,b

({
‖θ − θ0‖2 < 4C(α,β)ε2

√√√√√D†∧M∑
j=1

X−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D†∧M

]}∩ {B ∩M}
)
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≤ Pθ,b

(
‖θ − θ0‖2 < inf

D∈N

[
16C(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]])

= 0,

as soon as

‖θ − θ0‖2 ≥ inf
D∈N

[
C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]]
,

where C̃(α,β) is defined in (3.12). Therefore, we immediately get that (3.11) holds true.Finally, the validity of (3.16)
follows immediately on noting that

r̃2
ε,σ := inf

�̃α :αε,σ (�̃α)≤α

r2
ε,σ (Ea, �̃α,β)

≤ r2
ε,σ (Ea,�D†,M,β)

≤ inf
D∈N

[
C̃(α,β)ε2

√√√√√D∧M1∑
j=1

b−4
j + (7 + 4

√
xα/2)

[
σ 2 ln3/2(1/σ) ∨ a−2

D∧M0

]]
.

This completes the proof of the theorem.

A.3. Upper bounds: Specific cases

For the sake of convenience, we give the proof of each item (i)–(iv) in Theorem 3.2 in different sections.

A.3.1. Case (i): Mildly ill-posed problems with ordinary smooth functions
Recall that

bj ∼ j−t , t > 0, and aj ∼ j s, s > 0, j ∈ N. (A.28)

Proposition A.1. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.28). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

4s
2s+2t+1/2 ∨ [

σ ln3/4(1/σ)
]2( s

t
∧1)

. (A.29)

Proof. In a first time, we determine the order of the bandwidths M0 and M1. Setting

M̄1 :=
(

σ

√
1

t
ln(1/σ)

)−1/t

and M̃1 :=
(

σ

√
1

2t
ln(1/σ)

)−1/t

we get

σh1,M̄1
∼ σ

√
ln(M̄1) = σ

√
1

t
ln(1/σ) − 1

2t
ln

(
1

t
ln(1/σ)

)
≤ σ

√
1

t
ln(1/σ) ∼ bM̄1

,

which implies that M1 � M̄1. At the same time

σh1,M̃1
∼ σ

√
ln(M̃1) = σ

√
1

t
ln(1/σ) − 1

2t
ln

(
1

2t
ln(1/σ)

)



1702 C. Marteau and T. Sapatinas

= σ

√
1

2t
ln(1/σ) + 1

2t
ln(1/σ) − 1

2t
ln

(
1

2t
ln(1/σ)

)

� σ

√
1

2t
ln(1/σ) ∼ bM̄1

,

which implies that M1 � M̃1. Hence, we can conclude that

M1 ∼ (
σ
√

ln(1/σ)
)−1/t

.

Similarly, we get that

M0 ∼ (
σ
√

ln(1/σ)
)−1/t

.

In order to control the terms involved in the upper bound on the minimax separation radius, we consider the cases
s < t and s ≥ t separately.

Consider first the case s < t . In this case, for all D ∈N,

a−2
D∧M0

� a−2
M0

∼ M−2s
0 ∼ (

σ ln1/2(1/σ)
)2s/t � σ 2 ln3/2(1/σ).

Hence,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + [

σ 2 ln3/2(1/σ) ∨ a−2
D∧M0

]]
� inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]
.

Define now the value of J ∈ N that satisfies the following equation

ε2

√√√√√ J∑
j=1

b−4
j ∼ a−2

J ⇔ ε2J 2t+1/2 ∼ J 2s ⇔ J := J 	 ∼ ε
−2

2s+2t+1/2 .

We now consider the following situations (see Figure A.1 for a graphical illustration):

Fig. A.1. [Case I: a−2
D∧M0

� σ 2 ln3/2(1/σ)]. An illustration of the two resulting two terms (red color), namely ε2
√∑D∧M1

j=1 b−4
j

and a−2
D∧M0

, for

each D ∈ N, involved in the (upper bound of the) minimax separation radius r̃2
ε,σ (see (3.16)), where the bandwidths M0 and M1 are defined in

(3.3). The bandwidth J 	 corresponds to the value J ∈ N where the two dashed lines cross, i.e., J ∈ N : ε2
√∑J

j=1 b−4
j

= a−2
J

. The computation of

the separation radius r̃ε,σ , for 0 < ε ≤ ε0, ε0 ∈ ]0,1[ and 0 < σ ≤ σ0, σ0 ∈ ]0,1[, leads to three different scenarios: J	 � M0 � M1 (left figure),
M0 � J 	 � M1 (center figure) and M0 � M1 � J 	 (right figure).
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• (J 	 � M0) In this case,

r̃2
ε,σ � a−2

J 	 � ε
4s

2s+2t+1/2 .

• (J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N
[
a−2
D∧M0

]
� a−2

M0
∼ [

σ ln1/2(1/σ)
] 2s

t .

• (M0 � J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]

=
{

inf
D≤M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]}
∧
{

inf
D>M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]}

� a−2
M0

∧
{

inf
D>M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

M0

]}

� a−2
M0

∧
{

ε2

√√√√√M0∑
j=1

b−4
j + a−2

M0

}

� a−2
M0

∼ [
σ ln1/2(1/σ)

] 2s
t .

Combining the above terms, we immediately get

r̃2
ε,σ � ε

4s
2s+2t+1/2 ∨ [

σ ln1/2(1/σ)
] 2s

t . (A.30)

Consider now the case s ≥ t . Define the value of M ∈N that satisfies the following equation

a−2
M ∼ σ 2 ln3/2(1/σ) ⇔ M := M	 ∼ [

σ ln3/4(1/σ)
]− 1

s .

Hence,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + [

σ 2 ln3/2(1/σ) ∨ a−2
D∧M0

]]
� inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M	

]
.

Working along the lines of the case s ≤ t , by replacing M0 by M	 (see Figure A.2), we get

r̃2
ε,σ � ε

4s
2s+2t+1/2 ∨ [

σ ln3/4(1/σ)
]2

. (A.31)

Hence, (A.29) follows thanks to (A.30) and (A.31). This completes the proof of the proposition. �

A.3.2. Case (ii): Mildly ill-posed problems with super smooth functions
Recall that

bj ∼ j−t , t > 0, and aj ∼ exp{js}, s > 0, j ∈N. (A.32)
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Fig. A.2. [Case II: a−2
D∧M0

∼ σ 2 ln3/2(1/σ)]. An illustration of the two resulting two terms (red color), namely ε2
√∑D∧M1

j=1 b−4
j

and a−2
D∧M	 ,

for each D ∈ N, involved in the (upper bound of the) minimax separation radius r̃2
ε,σ (see (3.16)), where the bandwidth M1 is defined in (3.3) and

the bandwidth M	 is the value of M ∈ N such that the two terms a−2
M

and σ 2 ln3/2(1/σ) are of the same order, i.e., M ∈N : a−2
M

∼ σ 2 ln3/2(1/σ).

The bandwidth J 	 corresponds to the value J ∈ N where the two dashed lines cross, i.e., J ∈ N : ε2
√∑J

j=1 b−4
j

= a−2
J

. The computation of the

separation radius r̃ε,σ , for 0 < ε ≤ ε0, ε0 ∈ ]0,1[ and 0 < σ ≤ σ0, σ0 ∈ ]0,1[, leads to three different scenarios: J 	 � M	 � M1 (left figure),
M	 � J 	 � M1 (center figure) and M	 � M1 � J 	 (right figure).

Proposition A.2. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.32). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε2[ln(1/ε)

](2t+ 1
2 ) ∨ σ 2 ln

3
2 (1/σ). (A.33)

Proof. According to Section A.3.1, we obtain again

M1 ∼ (
σ
√

ln(1/σ)
)−1/t and M0 ∼ (

σ
√

ln(1/σ)
)−1/t

.

Then, for all D ∈N,

a−2
D∧M0

� a−2
M0

∼ exp{−2M0s} ∼ exp
{−2s

(
σ ln1/2(1/σ)

)−1/t}� σ 2 ln3/2(1/σ).

Define as in the previous case the value M ∈N that satisfies the following equation

a−2
M ∼ σ 2 ln3/2(1/σ) ⇔ M =: M	 ∼ 1

s
ln

[
1

σ ln3/4(1/σ)

]
.

Hence,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + [

σ 2 ln3/2(1/σ) ∨ a−2
D∧M0

]]
� inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M	

]
.

Define now the value of J ∈ N that satisfies the following equation

ε2

√√√√√ J∑
j=1

b−4
j ∼ a−2

J ⇔ ε2J 2t+1/2 ∼ exp{−2J s} ⇔ J := J 	 ∼ 1

σ
ln(1/ε) − ln

[(
1

σ
ln(1/ε)

)2t+ 1
2
]
.

We now consider the following situations:

• (J 	 � M	) In this case,

r̃2
ε,σ � a−2

J 	 � ε2[ln(1/ε)
](2t+ 1

2 )
.
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• (J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N
[
a−2
D∧M	

]
� a−2

M	 ∼ σ 2 ln
3
2 (1/σ).

• (M	 � J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M	

]

=
{

inf
D≤M	

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M	

]}
∧
{

inf
D>M	

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M	

]}

� a−2
M	 ∧

{
inf

D>M	

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

M	

]}

� a−2
M	 ∧

{
ε2

√√√√√M	∑
j=1

b−4
j + a−2

M	

}

� a−2
M	 ∼ σ 2 ln

3
2 (1/σ).

Combining the above terms, we immediately get (A.33). This completes the proof of the proposition. �

A.3.3. Case (iii): Severely ill-posed problems with ordinary smooth functions
Recall that

bj ∼ exp{−j t}, t > 0, and aj ∼ j s, s > 0, j ∈ N. (A.34)

Proposition A.3. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.34). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ �

[
ln(1/ε)

]−2s ∨
[

ln

(
1

σ ln1/2(1/σ)

)]−2s

. (A.35)

Proof. In a first time, we determine the order of the bandwidths M0 and M1. Setting

M̄1 := 1

t
ln

(
1

σ ln1/2(1/σ)

)
and M̃1 := 1

t
ln(1/σ),

we get

σh1,M̄1
∼ σ

√
ln(M̄1) = σ

√
ln

(
1

t
ln

(
1

σ ln1/2(1/σ)

))
� e−M̄1t = σ

√
ln(1/σ) ∼ bM̄1

,

which implies that M1 ≥ M̄1 for σ small enough. At the same time

σh1,M̃1
∼ σ

√
ln(M̃1) = σ

√
ln

(
1

t
ln(1/σ)

)

� b
M̃1

∼ e−M̃1t = σ,
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which implies that M1 ≤ M̃1 for σ small enough. Hence, we can conclude that

1

t
ln

(
1

σ ln1/2(1/σ)

)
≤ M1 ≤ 1

t
ln(1/σ),

for σ small enough. Similarly, we get that

1

t
ln

(
1

σ ln1/2(1/σ)

)
≤ M0 ≤ 1

t
ln(1/σ),

for σ small enough.
Now, we turn our attention to the proof of (A.35). For all D ∈ N,

a−2
D∧M0

� a−2
M0

� M−2s
0 ∼

[
ln

(
1

σ ln1/2(1/σ)

)]−2s

� σ 2 ln3/2(1/σ).

Hence,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + [

σ 2 ln3/2(1/σ) ∨ a−2
D∧M0

]]
� inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]
.

Define now the value of J ∈ N that satisfies the following equation

ε2

√√√√√ J∑
j=1

b−4
j ∼ a−2

J ⇔ ε2 exp{2tJ } ∼ J−2s ⇔ J := J 	 ∼ 1

t
ln(1/ε) − ln

[(
1

t
ln(1/ε)

)2s]
.

We now consider the following situations:

• (J 	 � M0) In this case,

r̃2
ε,σ � a−2

J 	 �
[
ln(1/ε)

]−2s
.

• (J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N
[
a−2
D∧M0

]
� a−2

M0
∼
[

ln

(
1

σ ln1/2(1/σ)

)]−2s

.

• (M0 � J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]

=
{

inf
D≤M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]}
∧
{

inf
D>M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]}

� a−2
M0

∧
{

inf
D>M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

M0

]}
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� a−2
M0

∧
{

ε2

√√√√√M0∑
j=1

b−4
j + a−2

M0

}

� a−2
M0

�
[

ln

(
1

σ ln1/2(1/σ)

)]−2s

.

Combining the above terms, we immediately get (A.35). This completes the proof of the proposition. �

A.3.4. Case (iv): Severely ill-posed problems with super smooth functions
Recall that

bj ∼ exp{−j t}, t > 0, and aj ∼ exp{js}, s > 0, j ∈N. (A.36)

Proposition A.4. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.36). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

2s
s+t ∨ [

σ ln1/2(1/σ)
]2( s

t
∧1)

. (A.37)

Proof. According to Section A.3.3, we obtain again that

1

t
ln

(
1

σ ln1/2(1/σ)

)
≤ M1 ≤ 1

t
ln(1/σ)

and

1

t
ln

(
1

σ ln1/2(1/σ)

)
≤ M0 ≤ 1

t
ln(1/σ),

for σ small enough. Now, we consider the cases s < t and s ≥ t separately.
Consider first the case s < t . In this case, for all D ∈N,

a−2
D∧M0

� a−2
M0

∼ exp{−2sM0}�
(
σ ln1/2(1/σ)

)2s/t � σ 2 ln3/2(1/σ).

Hence,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + [

σ 2 ln3/2(1/σ) ∨ a−2
D∧M0

]]
� inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]
.

Define now the value of J ∈ N that satisfies the following equation

ε2

√√√√√ J∑
j=1

b−4
j ∼ a−2

J ⇔ ε2 exp{2tJ } ∼ exp{2sJ } ⇔ J := J 	 ∼ 1

s + t
ln(1/ε).

We now consider the following situations:

• (J 	 � M0) In this case,

r̃2
ε,σ � a−2

J 	 � ε
2s
s+t .

• (J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N
[
a−2
D∧M0

]
� a−2

M0
�
[
σ ln1/2(1/σ)

] 2s
t .
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• (M0 � J 	 � M1) In this case,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]

=
{

inf
D≤M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]}
∧
{

inf
D>M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

D∧M0

]}

� a−2
M0

∧
{

inf
D>M0

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

M0

]}

� a−2
M0

∧
{

ε2

√√√√√M0∑
j=1

b−4
j + a−2

M0

}

� a−2
M0

�
[
σ ln1/2(1/σ)

] 2s
t .

Combining the above terms, we immediately get

r̃2
ε,σ � ε

2s
s+t ∨ [

σ ln1/2(1/σ)
] 2s

t . (A.38)

Consider now the case s ≥ t . Define the value M ∈ N that satisfies the following equation

a−2
M ∼ σ 2 ln3/2(1/σ) ⇔ M := M	 ∼ 1

s
ln

[
1

σ ln3/4(1/σ)

]
.

Hence,

r̃2
ε,σ � inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + [

σ 2 ln3/2(1/σ) ∨ a−2
D∧M0

]]
� inf

D∈N

[
ε2

√√√√√D∧M1∑
j=1

b−4
j + a−2

M	

]
.

Working along the lines of the case s < t by replacing M0 by M	, we get

r̃2
ε,σ � ε

2s
s+t ∨ [

σ ln1/2(1/σ)
]2

. (A.39)

Hence, (A.37) follows thanks to (A.38) and (A.39). This completes the proof of the proposition. �

A.4. Non-asymptotic lower bounds

A.4.1. Proof of Proposition 4.1
Let θ0, θ be two given sequences (to be made precise below) such that θ0 ∈ Ea \ {0} and θ − θ0 ∈ Ea , and let D be a
given bandwidth such that

θk = θ0,k when k 	= D.

For any t ∈R, define the sequence b̃(t) = (b̃(t))k∈N as

b̃(t)k = bk ∀k 	= D and b̃(t)D = t.
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Then

β0,σ,b

(
�(rσ ),B(b)

) = inf
�̃α :α0,σ (�̃α)≤α

sup
θ̃ :θ̃−θ0∈�a(rσ )

b̄∈B(b)

Pθ̃ ,b̄(�̃α = 0)

≥ inf
�̃α :α0,σ (�̃α)≤α

sup
b̄∈B(b)

Pθ,b̄(�̃α = 0)

≥ inf
�̃α :α0,σ (�̃α)≤α

sup
t∈[C0bD,C1bD]

P
θ,b̃(t)

(�̃α = 0).

From the last inequality, we get

β0,σ,b

(
�(rσ ),B(b)

)
≥ inf

�̃α :α0,σ (�̃α)≤α

∫ C1bD

C0bD

Pθ,b̄(t)(�̃α = 0)
1

σ
√

2π
e
− (t−bD)2

2σ2 dt

≥ inf
�̃α :α0,σ (�̃α)≤α

∫
R

Pθ,b̄(t)(�̃α = 0)
1

σ
√

2π
e
− (t−bD)2

2σ2 dt −
∫
R\[C0bD;C1bD]

1

σ
√

2π
e
− (t−bD)2

2σ2 dt

= inf
�̃α :α0,σ (�̃α)≤α

∫
R

Pθ,b̄(t)(�̃α = 0)
1

σ
√

2π
e
− (t−bD)2

2σ2 dt − (
1 − GD(C0,C1)

)
, (A.40)

where

GD(C0,C1) := 1

σ
√

2π

∫ C1bD

C0bD

exp
{−(t − bD)2/

(
2σ 2)}dt.

The inequality (A.40) can be rewritten in a Bayesian form

β0,σ,b

(
�(rσ ),B(b)

)≥ inf
�̃α :α0,σ (�̃α)≤α

Pπ (�̃α = 0) − (
1 − GD(C0,C1)

)
,

where π is a (prior) probability measure on both sequences θ̃ and b̄ defined as

π =
∏
j∈N

πj , πj = πj,1 × πj,2, j ∈N,

with

πj,1 = δθj,0 and πj,2 = δbj
, j 	= D,

and

πD,1 = δθD
and dπD,2(t) = 1

σ
√

2π
exp

{
− 1

2σ 2
(t − bD)2

}
dt.

We stress that using the above product probability measure π , we deal in fact with observations (Y,X) = (Yj ,Xj )j∈N
from the following Bayesian sequence model

Yj = bj θj,0, Xj = bj + σηj , j ∈N \ {D},
and

YD = BDθD, XD = BD + σηD, (A.41)

where BD is Gaussian random variable with mean bD and variance σ 2, that is independent of the standard Gaussian
sequence {ηj }j∈N.
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By standard Bayesian arguments (see, e.g., Section 3.1 of [23]), we arrive at

β0,σ,b

(
�(rσ ),B(b)

)≥ 1 − α − 1

2

(
E0

[
L2

π (Y,X)
]− 1

)1/2 − (
1 − GD(C0,C1)

)
, (A.42)

In view of the above, it is immediately seen that

Lπ(Y,X) =
∏
j∈N

Lπj
(Yj ,Xj ) = LπD

(YD,XD).

Hence, as before, we arrive at

β0,σ,b

(
�(rσ ),B(b)

)≥ 1 − α − 1

2

(
E0

[
L2

πD
(YD,XD)

]− 1
)1/2 − (

1 − GD(C0,C1)
)
. (A.43)

Our task below is then to provide an upper bound on E0[L2
πD

(YD,XD)]. To this end, it is easily seen from model
(A.41) that ZD = (XD,YD), D ∈ N, is Gaussian random vector with mean Uθ,D and covariance matrix σ 2�θ,D ,
where

Uθ,D =
(

bD

bDθD

)
, �θ,D =

(
2 θD

θD θ2
D

)
.

Note that

�−1
θ,D = 1

θ2
D

(
θ2
D −θD

−θD 2

)
,

and

(ZD − Uθ,D)′�−1
θ,D(ZD − Uθ,D)

= 1

θ2
D

(XD − bD,YD − bDθD)

(
θ2
D −θD

−θD 2

)(
XD − bD

YD − bDθD

)

= 1

θ2
D

(XD − bD,YD − bDθD)

(
θ2
D(XD − bD) − θD(YD − bDθD)

−θD(XD − bD) + 2(YD − bDθD)

)

= 1

θ2
D

(XD − bD,YD − bDθD)

(
XDθ2

D − YDθD

2YD − bDθD − XDθD

)

= 1

θ2
D

(
(XD − bD)

(
XDθ2

D − YDθD

)+ (YD − bDθD)(2YD − bDθD − XDθD)
)

= 1

θ2
D

[
(YD − XDθD)2 + (YD − bDθD)2].

Hence,

LπD
(ZD) = exp

{
(ZD − Uθ0,D)′σ−2�−1

θ0,D
(ZD − Uθ0,D) − (ZD − Uθ,D)′σ−2�−1

θ,D(ZD − Uθ,D)
}

= exp

{
1

σ 2

[
(YD − XDθD,0)

2

θ2
D,0

+ (YD − bDθD,0)
2

θ2
D,0

− (YD − XDθD)2

θ2
D

− (YD − bDθD)2

θ2
D

]}

= exp

{
1

σ 2

[
2Y 2

D

(
1

θ2
D,0

− 1

θ2
D

)
− 2XDYD

(
1

θD,0
− 1

θD

)
− 2bDYD

(
1

θD,0
− 1

θD

)]}

= exp

{
1

σ 2

[
2Y 2

D

(
1

θ2
D,0

− 1

θ2
D

)
− 2YD(XD + bD)

(
1

θD,0
− 1

θD

)]}
.
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Under H0, YD = BDθD,0. Therefore, conditionally on BD ,

E0
[
L2

π (ZD)
] = E

[
exp

{
2

σ 2

(
2B2

D

(
1 − θ2

D,0

θ2
D

)
− 2BD(XD + bD)

(
1 − θD,0

θD

))}]

= E

(
exp

{
4B2

D

σ 2

(
1 − θ2

D,0

θ2
D

)
− 4BDbD

σ 2

(
1 − θD,0

θD

)}

×E

[
exp

{
−4BDXD

σ 2

(
1 − θD,0

θD

)} ∣∣∣ BD

])

:= E
(
E0

[
L2

π (ZD) | BD

])
.

Using the formula

E
[
exp(−(λ1 + λ2V )

]= exp
(−λ1 + λ2

2/2
)
, λ1, λ2 ∈R, (A.44)

for any standard Gaussian random variable V , with

λ1 = 4B2
D

σ 2

(
1 − θD,0

θD

)
, λ2 = 4BD

σ

(
1 − θD,0

θD

)
,

we arrive at

E0
[
L2

π (ZD) | BD

] = exp

{
4B2

D

σ 2

(
1 − θ2

D,0

θ2
D

)
− 4BD

σ 2

(
1 − θD,0

θD

)
(BD + bD)

}

× exp

{
8B2

D

σ 2

(
1 − θD,0

θD

)2}

= exp
{
σ−2B2

D

[
4
(
1 − ρ2

D

)− 4(1 − ρD) + 8(1 − ρD)2]}
× exp

{−4σ−2BDbD(1 − ρD)
}
,

where

ρD = θD,0

θD

.

Using simple algebra, we get

E0
[
L2

π (ZD) | BD

] = exp

{
4B2

D

σ 2
(ρD − 1)(ρD − 2) − 4BDbD

σ 2
(1 − ρD)

}

= exp

{
4

σ 2
(ρD − 1)

[
B2

D(ρD − 2) + BDbD

]}
.

It is easily seen that

B2
D(ρD − 2) + BDbD = (bD + σ η̃D)2(ρD − 2) + (bD + σ η̃D)bD

= b2
D(ρD − 1) + 2σ η̃DbD(ρD − 3/2) + σ 2η̃2

D(ρD − 2),

where {η̃D}D∈N is a sequence of independent standard Gaussian random variables. Therefore,

E0
[
L2

π (ZD) | BD

]= exp

{
4b2

D

σ 2
(1 − ρD)2

}
exp

{
8

σ
bDη̃D(ρD − 1)

(
ρD − 3

2

)
+ 4η̃2

D(ρD − 2)

}
.
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Since ρD ∈ ]1,2[, then 4η̃2
D(ρD − 2) < 0 and, hence,

E0
[
L2

π (ZD) | BD

]≤ exp

{
4b2

D

σ 2
(1 − ρD)2 + 8

σ
bDη̃D(ρD − 1)

(
ρD − 3

2

)}
.

Using (A.44) with

λ1 = 0, λ2 = 8

σ
bD(ρD − 1)

(
ρD − 3

2

)
,

we get

E0
[
L2

π (ZD)
] = G−1

D (C0,C1)E
(
E0

[
L2

π (ZD) | BD

])
≤ E

(
exp

{
4b2

D

σ 2
(1 − ρD)2 + 8

σ
bDη̃D(ρD − 1)

(
ρD − 3

2

)})

= exp

{
4b2

D

σ 2
(1 − ρD)2

[
1 +

(
ρD − 3

2

)2]}

≤ exp

{
5b2

D

σ 2
(1 − ρD)2

}
. (A.45)

Using (A.43) and (A.45), we eventually obtain

β0,σ,b

(
�(rσ,D),B(b)

) ≥ 1 − α − 1

2

(
exp

{
5b2

D

σ 2
(1 − ρD)2

}
− 1

)1/2

− (
1 − GD(C0,C1)

)
≥ β,

as soon as,

5b2
D

σ 2
(1 − ρD)2 ≤ ln

(
1 + (1 − α − β)2) and G(C0,C1) ≥ 1 − 1

2
(1 − α − β).

In particular,

5b2
D

σ 2
(1 − ρD)2 ≤ ln

(
1 + (1 − α − β)2) ⇔ |θD − θD,0| ≤ Cα,βσ |θD|b−1

D ,

where

Cα,β =
√

ln(1 + (1 − α − β)2)

5
. (A.46)

Choice of θ : The sequence θ = (θj )j∈N is chosen as follows

θj =
{

0 if j 	= D,
a−1
D /2 if j = D.

It can be easily seen that θ ∈ Ea .
Choice of θ0: The sequence θ0 = (θj,0)j∈N is chosen as follows

θj,0 =
{

0 if j 	= D,
a−1
D /2 + Cα,βσa−1

D b−1
D /2 if j = D.
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Note that θ0 ∈ Ea as soon as

Cα,βσb−1
D ≤ 1. (A.47)

Indeed, using the standard inequality (x + y)2 ≤ 2(x2 + y2), for x, y ∈R, we immediately get

∑
j∈N

a2
j θ

2
j,0 = a2

Dθ2
D,0 ≤ a2

D

(
2
a−2
D

4
+ 2C2

α,β

σ 2

b2
D

a−2
D

4

)
≤ 1

2
+ C2

α,β

σ 2

2b2
D

≤ 1, (A.48)

as soon as (A.47) is satisfied. Furthermore, as soon as (A.47) is satisfied, it is easily seen that θ − θ0 ∈ Ea .
Moreover, for the specific choices of θ and θ0 given above, it is immediately seen that

|θD − θD,0| = Cα,βσb−1
D |θD| ⇔ ‖θ − θ0‖ = Cα,β

2
σb−1

D a−1
D .

In other words, we have proved that for all D ∈N satisfying (A.47) then

β0,σ,b

(
�(rσ,D),B(b)

)
> β, where rσ,D = Cα,β

2
σb−1

D a−1
D ,

for any given β ∈ ]0,1 − α[. This implies that, for every ρ > 0, β0,σ,b(�(ρ),B(b)) ≥ β as soon as

ρ ≤ Cα,β

2
σb−1

D a−1
D for some D ∈ N : Cα,βσb−1

D ≤ 1,

which holds, as soon as

ρ ≤ Cα,β

2
σb−1

D a−1
D for some 1 ≤ D ≤ M2,

on noting that

M2 := sup

{
D ∈ N : Cα,βσb−1

D ≤ 1 and GD(C0,C1) ≥ 1 − 1

2
(1 − α − β)

}
.

In particular,

β0,σ,b

(
�(ρ),B(b)

)
> β for all ρ ≤ Cα,β

2
σ max

1≤D≤M2

[
b−1
D a−1

D

]
.

Hence,

r̃0,σ ≥ Cα,β

2
σ max

1≤D≤M2

[
b−1
D a−1

D

]
.

This completes the proof of the proposition.

A.4.2. Proof of Theorem 4.1
The proof is splitted in two parts. We first show that r̃ε,σ ≥ r̃ε,0 and then show that r̃ε,σ ≥ r̃0,σ .

Consider observations Y = (Yj )j∈N from the GSM (4.8). Introduce the following goodness-of-fit testing algorithm:

• Generate a sequence X̃ = (X̃j )j∈N according to the GSM

X̃j = bj + σ η̃j , j ∈N, (A.49)

where η̃ = (η̃j )j∈N is a sequence of independent standard Gaussian random variables (that is also independent of
the sequence ξ = (ξj )j∈N). (Note that the GSM (A.49) is an independent copy of the second equation in the GSM
(1.1).)
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• Let �̃α := �̃α(Y, X̃) be a given (non-randomized) α-level goodness-of-fit testing procedure based on observations
(Y, X̃) = (Yj , X̃j )j∈N from the GSMs (4.8) and (A.49).

• Define the randomized test �α := �α(Y )2 as

�α(Y ) := E[�̃α | Y ],
where E[·] refers to expectation with respect to the independent standard Gaussian sequence η̃.

In particular, for every ε > 0 and σ > 0, the randomized test �α is an α-level test. Indeed,

αε(�α) = Eθ0,b[�α]
= Eθ0,b

[
E[�̃α | Y ]]

= Eθ0,b[�̃α]
= Pθ0,b(�̃α = 1) = α, (A.50)

since �̃α is an α-level test.
Let θ ∈ l2(N) and θ − θ0 ∈ Ea be fixed. Then, the associated second kind error probability satisfies

Eθ,b

(
1 − �α(Y )

) = Eθ,b

(
1 −E[�̃α | Y ])

= Eθ,b(1 − �̃α)

= Pθ,b(�̃α = 0) ≤ β, (A.51)

as soon as

‖θ − θ0‖ ≥ rε,σ (Ea, �̃α,β).

This implies that for any α-level goodness-of-fit testing procedure �̃α , based on observations (Y, X̃) from the
GSMs (4.8)–(A.49), we can associate an α-level goodness-of-fit testing procedure �α , based on observations Y from
the GSM (4.8), such that the separation radius of �α is smaller than the separation radius of �̃α , i.e.,

rε,0(Ea,�α,β) ≤ rε,σ (Ea, �̃α,β).

Hence, it is immediately seen that, for any α-level goodness-of-fit testing procedure �̃α , based on observations (Y, X̃)

from the GSMs (4.8) and (A.49),

r̃ε,0 := inf
�α :αε,0(�̄α)≤α

rε,0(Ea, �̄α,β)

≤ rε,0(Ea,�α,β)

≤ rε,σ (Ea, �̃α,β), (A.52)

implying that

r̃ε,0 ≤ r̃ε,σ .

The proof of the assertion

r̃0,σ ≤ r̃ε,σ ,

2A measurable function of the observation Y = (Yj )j∈N from the GSM (4.8) with values in the interval [0,1]: for any given radius ρ > 0, the
null hypothesis is rejected with probability �α(Y ) and it is not rejected with probability 1 − �α(Y ). In this case, αε(�α) := Eθ0,b(�α(Y )) and
βε(�a(ρ),�α) := supθ0∈Eaθ−θ0∈�a(ρ) Eθ,b(1 − �α(Y )).
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follows similarly, along the lines of the proof of the previous assertion, and it is therefore omitted. This completes the
proof of (4.12).

Finally, (4.13) follows immediately form (4.12), taking into account (4.3) and (4.10). This completes the proof of
the theorem.

A.5. Lower bounds: Specific cases

For the sake of convenience, we give the proof of each item (i)–(iv) in Theorem 4.2 in different sections.

A.5.1. Case (i): Mildly ill-posed problems with ordinary smooth functions
We assume that (A.28) holds true, i.e.,

bj ∼ j−t , t > 0, and aj ∼ j s, s > 0, j ∈ N.

Proposition A.5. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.28). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

4s
2s+2t+1/2 ∨ σ 2( s

t
∧1). (A.53)

Proof. For the second term in (4.13), it is known that (see [18,21]),

sup
D∈N

[
cα,βε2

√√√√√ D∑
j=1

b−4
j ∧ a−2

D

]
∼ ε

4s
2s+2t+1/2 .

Consider now the first term in (4.13). If s > t , then the sequence {b−1
j a−1

j }j∈N is non-increasing and, thus,

C2
α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]∼ σ 2.

On the other hand, if s ≤ t , then the sequence {b−1
j a−1

j }j∈N is non-decreasing. Hence, thanks to (4.4),

σ 2 ∼ b2
M2

⇔ M2 ∼ σ−1/t ,

and, thus,

C2
α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]∼ σ 2b−2
M2

a−2
M2

∼ a−2
M2

∼ σ
2s
t .

Combining the above terms, we arrive at (A.53). This completes the proof of the proposition. �

A.5.2. Case (ii): Mildly ill-posed problems with super smooth functions
We assume that (A.32) holds true, i.e.,

bj ∼ j−t , t > 0, and aj ∼ exp{js}, s > 0, j ∈N.

Proposition A.6. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.32). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε2[ln(1/ε)

](2t+ 1
2 ) ∨ σ 2. (A.54)
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Proof. For the second term in (4.13), it is known that (see [18,21]),

sup
D∈N

[
cα,βε2

√√√√√ D∑
j=1

b−4
j ∧ a−2

D

]
∼ ε2[ln(1/ε)

](2t+ 1
2 )

.

Consider now the first term in (4.13). Then, the sequence {b−1
j a−1

j }j∈N is non-increasing for each s, t > 0, and,
thus,

C2
α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]∼ σ 2.

Combining the above terms, we arrive at (A.54). This completes the proof of the proposition. �

A.5.3. Case (iii): Severely ill-posed problems with ordinary smooth functions
We assume that (A.34) holds true, i.e.,

bj ∼ exp{−j t}, t > 0, and aj ∼ j s, s > 0, j ∈ N.

Proposition A.7. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.34). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ �

[
ln(1/ε)

]−2s ∨ [
ln(1/σ)

]−2s
. (A.55)

Proof. For the second term in (4.13), it is known that (see [18,21]),

sup
D∈N

[
cα,βε2

√√√√√ D∑
j=1

b−4
j ∧ a−2

D

]
∼ [

ln(1/ε)
]−2s

.

Consider now the first term in (4.13). Then, the sequence {b−1
j a−1

j }j∈N is non-decreasing. Hence, thanks to (4.4),

σ 2 ∼ b2
M2

⇔ M2 ∼ 1

t
ln(1/σ)

and, thus,

C2
α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]∼ σ 2b−2
M2

a−2
M2

∼ a−2
M2

∼ [
ln(1/σ)

]−2s
.

Combining the above terms, we arrive at (A.55). This completes the proof of the proposition. �

A.5.4. Case (iv): Severely ill-posed problems with super smooth functions
We assume that (A.36) holds true, i.e.,

bj ∼ exp{−j t}, t > 0, and aj ∼ exp{js}, s > 0, j ∈N.

Proposition A.8. Assume that the sequences b = (bj )j∈N and a = (aj )j∈N are given by (A.36). Then, there exists
ε0, σ0 ∈ ]0,1[ such that, for all 0 < ε ≤ ε0 and 0 < σ ≤ σ0, the minimax separation radius r̃ε,σ satisfies

r̃2
ε,σ � ε

2s
s+t ∨ σ 2( s

t
∧1). (A.56)
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Proof. For the second term in (4.13), it is known that (see [18,21]),

sup
D∈N

[
cα,βε2

√√√√√ D∑
j=1

b−4
j ∧ a−2

D

]
∼ ε

2s
s+t .

Consider now the first term in (4.13). If s > t , then the sequence {b−1
j a−1

j }j∈N is non-increasing and, thus,

C2
α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]∼ σ 2.

On the other hand, if s ≤ t , then the sequence {b−1
j a−1

j }j∈N is non-decreasing. Hence, thanks to (4.4),

σ 2 ∼ b2
M2

⇔ M2 ∼ 1

t
ln(1/σ),

and, thus,

C2
α,β

4
σ 2 max

1≤D≤M2

[
b−2
D a−2

D

]∼ σ 2b−2
M2

a−2
M2

∼ a−2
M2

∼ σ
2s
t .

Combining the above terms, we arrive at (A.53). This completes the proof of the proposition. �
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