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We consider multichannel deconvolution in a periodic setting with long-memory er-
rors under three different scenarios for the convolution operators, i.e., super-smooth,
regular-smooth and box-car convolutions. We investigate global performances of lin-
ear and hard-thresholded non-linear wavelet estimators for functions over a wide
range of Besov spaces and for a variety of loss functions defining the risk. In partic-
ular, we obtain upper bounds on convergence rates using the Lp-risk (1 ≤ p < ∞).
Contrary to the case where the errors follow independent Brownian motions, it
is demonstrated that multichannel deconvolution with errors that follow indepen-
dent fractional Brownian motions with different Hurst parameters results in a much
more involved situation. An extensive finite-sample numerical study is performed
to supplement the theoretical findings.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study multichannel deconvolution with errors following independent fractional Brownian motions
(fBms). More specifically, consider the problem of recovering f(·) ∈ L2(T ), T = [0, 1], on the basis of
observing the following noisy convolutions, with known blurring functions g�(·),
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dY�(t) = K�f(t)dt + σ�

nα�/2
dBH�

(t), t ∈ T, � = 1, 2, . . . ,M, (1)

where σ� are known positive constants and the convolution operators K� are defined as

K�f(t) := f ∗ g�(t) =
∫
T

g�(t− x)f(x)dx, t ∈ T, � = 1, 2, . . . ,M. (2)

Here, BH�
(·) are independent standard fBms with Hurst parameters H� = 1 − α�/2 ∈ [1/2, 1), � =

1, 2, . . . ,M ; that is, for each � = 1, 2, . . . ,M ; BH�
(·) is a Gaussian process with zero mean and covari-

ance function

E
(
BH�

(s)BH�
(t)
)

= 1
2
(
|s|2H� + |t|2H� − |t− s|2H�

)
, s, t ∈ T, � = 1, 2, . . . ,M.

The case where M = 1 corresponds to the fractional Gaussian noise model that can also be viewed as an
approximation to the nonparametric regression model with long-range dependence (LRD) (cf. [1,2]). On the
other hand, the case H� = 1/2, � = 1, . . . ,M ; becomes the multichannel deconvolution with independent
standard Brownian motion errors. This model has received attention in studies by [3–5] and [6].

We consider the following scenarios for the convolution operators K�, � = 1, 2, . . . ,M ; given by (2) in the
Fourier domain where f̃(m) :=

∫
R
e−2πimxf(x) dx.

1. Smooth convolutions such that, in the Fourier domain,∣∣K̃�f(m)
∣∣ � |m|−ν� exp

{
−θ�|m|β�

}∣∣f̃(m)
∣∣, (3)

where m ∈ R, � = 1, 2, . . . ,M ; β� > 0 and θ� ≥ 0. In particular, ν� ∈ R if θ� > 0 and ν� > 0 if θ� = 0. The
key parameter is θ�, controlling the severity of the decay. The so-called super-smooth deconvolution or
exponential decay occurs when θ� > 0 and the regular-smooth or polynomial case occurs when θ� = 0.
In the regular-smooth case, each ν� > 0 corresponds to the so-called degree of ill-posedness (DIP) index
with ν� = 0 representing the direct (or well-posed) case.

2. Box-car convolutions such that, in the Fourier domain,

∣∣K̃�f(m)
∣∣ = sin(πmc�)

πmc�

∣∣f̃(m)
∣∣, m ∈ R, � = 1, 2, . . . ,M ; (4)

where c� > 0 for each � = 1, 2, . . . ,M .

Deconvolution is a common problem in many areas of signal and image processing which include, for instance,
light detection and ranging (LIDAR) remote sensing and reconstruction of blurred images. LIDAR is a laser
device which emits pulses, reflections of which are gathered by a telescope aligned with the laser. The return
signal is used to determine the distance and the position of the reflecting material. However, if the system
response function of the LIDAR is longer than the time resolution interval, then the measured LIDAR signal
is blurred and the effective accuracy of the LIDAR decreases. This loss of precision can be corrected by
deconvolution. In practice, measured LIDAR signals are corrupted by additional noise which renders direct
deconvolution impossible. Moreover, if M ≥ 2 (finite) LIDAR devices are used to recover a signal, then
we talk about a multichannel deconvolution problem. The case where M ≥ 2 in (1)–(2) and H� = 1/2,
� = 1, . . . ,M ; i.e., the problem of considering systems of convolution equations with independent errors,
was first considered by [7] in order to evade the ill-posedness of the standard deconvolution model.

In the standard Brownian motion error case, a statistical use of the above idea was investigated by [8,3]
who proposed adaptive wavelet thresholding estimators. In particular, if K� are regular-smooth convolutions,
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they showed that an adaptive wavelet thresholding estimator based on the output from the M channels
“picks” the convergence rate according to “the best” operator K�, i.e., the one with the smallest ν�, � =
1, 2, . . . ,M . Consequently, adding more channels does not improve the convergence rate of the suggested
estimator. On the other hand, if K�, � = 1, 2, . . . ,M ; are box-car convolutions, they showed that adding
new channels improves the convergence rate. To be more specific, [3] showed, in particular, that the true
signal f(·) can be recovered with accuracy (within a logarithmic factor),

n−2s/(2s+2ν+1) and n−2s/(2s+(2M+1)/M+1),

in the regular-smooth and box-car convolutions, respectively. Here, s > 0 is the smoothness of the underlying
signal, ν = min{ν1, . . . , νM} and the accuracy of estimation is measured with respect to an upper bound
on the L2-risk. In [3] the authors did not consider the super-smooth convolutions.

However, real data do not always meet the independence assumption and scientist in diverse fields have
observed empirically that correlations between observations that are far apart decay to zero at a slower
rate than one would expect from independent data (or, in more general situation, where one deals with
short-range dependent data). These fields include astronomy, agronomy, economics chemistry, etc. (see,
e.g., [9]).

Therefore, our aim is to study the multichannel deconvolution with errors following fBms. In fact, we
show that the situation in this case is much more involved than in the case where the errors follow standard
Brownian motions. In particular, we show that in multichannel deconvolution with errors following fBms,
the true signal f(·) can be recovered with respect to an upper bound on the Lp-risk (1 ≤ p < ∞) with
accuracy,

n−sα�∗p/(2s+2ν∗+1), (logn)−ps∗/β�∗ and n−sα∗p/(2s+2ν̃∗+1)

for regular-smooth, super-smooth and box-car deconvolutions respectively (the regular smooth and box-car
scenarios are within a logarithmic factor). The parameters in the case of smooth (both regular-smooth and
super-smooth) convolutions are defined with

�∗ := arg min
1≤�≤M

n−α�2(α�+2ν�)e2θ�2β� (5)

for the optimal channel and ν∗ is defined for the regular-smooth case as

ν∗ := ν�∗ + α�∗

2 − 1
2 . (6)

For the case of box-car convolutions the parameters are defined with

α∗ := min{α1, . . . , αM} and α∗ := max{α1, . . . , αM}, (7)

ν̃∗ := 2M + 1
2M + α∗

2 − 1
2 . (8)

Consequently, the conclusions of [3] are no longer valid here. Even in case of M = 2, there are different
possibilities for the best scenario, depending on a complicated relationship between s, M , ν�, α�, θ� and β�,
as we illustrate in Section 4.

1.1. Modification of the WaveD method

Along with theoretical results, a comparison with the existing WaveD method is presented to examine
the effect of LRD and multiple channels. Let us compare our modification of the WaveD to the standard
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Fig. 1. Top row: original Doppler and LIDAR signal; 2nd row: corresponding blurred and noisy signals, ν = 0.5, α = 0.5 (black line:
first channel; grey line: second channel); 3rd row: reconstructed signal using the proposed method with M = 2 channels; 4th row:
reconstructed signal using the standard R-package WaveD using the best channel (see (31), for the notion of ‘best channel’).

R-package WaveD of [10]. In particular, the four signals, LIDAR, Doppler, Bumps and Blocks are used as
candidate signals in estimation.

For mild levels of LRD (1/2 < α < 1) there is not too much difference between the both approaches.
However, an improvement is visible for a stronger dependence (0 < α < 1/2), as illustrated on Fig. 1 and
Fig. 2. For the parameters α = 0.5, ν = 0.5 and M = 2, in the third row, a signal is reconstructed using
the proposed multichannel method while the fourth row shows the standard WaveD approach using the best
channel.

Clearly, the standard WaveD approach does not remove artificial noise, which is due to LRD (cf. Fig. 1).
We modify the WaveD approach and achieve more reliable estimation by appropriately modified tuning
parameters and also truncating the wavelet expansion at an appropriate lower scale level. This truncation is
particularly important when there is severe LRD but does not universally yield better estimates (cf. Fig. 2)
and is discussed in more depth in the numerical section later.
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Fig. 2. Top row: original Bumps and Blocks signal; 2nd row: corresponding blurred and noisy signals, ν = 0.5, α = 0.5 (black line:
first channel; grey line: second channel); 3rd row: reconstructed signal using the proposed method with M = 2 channels; 4th row:
reconstructed signal using the standard R-package WaveD using the best channel (see (31), for the notion of ‘best channel’).

1.2. Related works

The case where M = 1 and H1 = 1/2 in (1)–(2) refers to the so-called standard deconvolution model which
attracted attention of a number of researchers. (Note that the standard deconvolution model is typically
ill-posed in the sense of Hadamard: the inversion does not depend continuously on the observed data, i.e.,
small noise in the convolved signal leads to a significant error in the estimation procedure.) After a rather
rapid progress in this problem in late eighties–early nineties, authors turned to adaptive wavelet solutions of
the problem that are optimal (in the minimax or the maxiset sense), or near-optimal within a logarithmic
factor, in a wide range of Besov balls and for a variety of loss functions defining the risk, and under mild
conditions on the blurring function (see, e.g., [11–18]).

The case M = 1 and H� > 1/2 (i.e., standard deconvolution with LRD errors) has been investigated in
[1,2,19] and [20].
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The case where α� = 1 for each � = 1, 2, . . . ,M ; (i.e., the case where in the multichannel deconvolution
model (1) the errors follow independent standard Brownian motions) was first considered in [3] (extending
the results obtained in [14] for the case M = 1).

The case of the multichannel deconvolution with errors following LRD sequences was investigated in [21]
using the minimax approach, extending results obtained in [4,5] and [6].

The case of nonparametric density estimation for the errors-in-variables problem with LRD has been
studied by [22]. In particular, it was shown that LRD has no impact on the optimal convergence properties
in the super-smooth scenario. We show similar results for the multichannel deconvolution model presented
here.

Finally, for more information regarding the LIDAR device, the reader is referred to, e.g., [23] and [24].

1.3. Structure of the paper

The paper is organised as follows. Section 2 contains some preliminaries on the periodised Meyer wavelets
and Besov spaces on the unit interval T . Section 3 provides the construction of the proposed adaptive wavelet
thresholding estimators while Section 4 contains the corresponding upper bound results over a wide range
of Besov spaces and for a variety of loss functions defining the risk, for regular-smooth, super-smooth and
box-car convolutions. An extensive simulation study to supplement the theoretical findings of Section 4 is
performed in Section 5. Conclusions and discussion are given in Section 6 and the proofs of the theoretical
results and auxiliary results given in Section 7 and Appendix A.

2. Preliminaries

2.1. Periodised Meyer wavelets and Besov spaces on the unit interval

To avoid edge problems and unnecessary technicalities arising in defining wavelet basis on the unit interval
T , we will assume that f(·) and g�(·), � = 1, 2, . . . ,M ; are periodic on T . Moreover, not only for theoretical
reasons but also for practical convenience (see, e.g., [14], Sections 2.3, 3.1–3.2), we use band-limited wavelet
basis, and in particular the periodised Meyer wavelet basis for which fast algorithms exist (see, e.g., [25]
and [15]). Specifically, let φ(·) and ψ(·) be the Meyer scaling and mother wavelet functions, respectively, on
the real line R = (−∞,∞) (see, e.g., [26] or [27]). As usual,

φj,k(t) = 2j/2φ
(
2jt− k

)
, ψj,k(t) = 2j/2ψ

(
2jt− k

)
, j ≥ 0, k ∈ Z, t ∈ R,

are, respectively, the dilated and translated Meyer scaling and wavelet functions at resolution level j and
scale position k/2j . Similarly to Section 2.3 in [14], we obtain a periodised version of Meyer wavelet basis
by periodising the basis functions {φ(·), ψ(·)} on R, i.e., for j ≥ 0 and k = 0, 1, . . . , 2j − 1,

Φj,k(t) =
∑
i∈Z

2j/2φ
(
2j(t + i) − k

)
, Ψj,k(t) =

∑
i∈Z

2j/2ψ
(
2j(t + i) − k

)
, t ∈ T.

In the periodic setting, we recall that Besov spaces are characterised by the behaviour of the wavelet
coefficients (see, e.g., [14], Section 2.4), i.e.,

Definition 1. For f(·) ∈ Lπ0(T ), 1 ≤ π0 < ∞,

f(·) ∈ Bs
π0,r(T ) ⇐⇒

∞∑
j=0

2j(s+1/2−1/π0)r

[ 2j−1∑
k=0

|bj,k|π0

]r/π0

< ∞, (9)

with the usual modification if π0 = ∞ and/or r = ∞.
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As usual, the wavelet coefficients bj,k are obtained by bj,k =
∫
T
f(t)ψj,k(t)dt. The parameter s > 0 can

be thought of as related to the number of derivatives of f(·). With different values of π0 (1 ≤ π0 ≤ ∞) and
r (1 ≤ r ≤ ∞), the Besov spaces Bs

π0,r(T ) capture a variety of smoothness features in a function including
spatially inhomogeneous behaviour.

In the sequel, κ will denote the multiple index (j, k) and, adopting standard convention, Φ(·) = Ψ−1(·),
where Φ(·) corresponds to the periodised scaling function associated with the Meyer wavelet basis mentioned
above.

3. Construction of the adaptive wavelet thresholding and linear estimators

The estimation of f is approached differently for the different deconvolution types. Namely, for regular-
smooth and box-car convolutions a wavelet non-linear (hard thresholding) estimator is used while for the
super-smooth convolutions a wavelet linear (projection) estimator is used.

To simplify the overall problem, the estimation procedure is considered in the Fourier domain to reduce the
convolution operator to a product of Fourier coefficients. Denote the Fourier basis functions, em(t) := e2πimt,
m ∈ Z, with the corresponding inner product operator, 〈f1, f2〉 =

∫
f1(x)f2(x) dx where f denotes the

complex conjugate of f . Let h = f ∗ g�. Denote the relevant Fourier coefficients,

Φmj0k = 〈Φj0,k, em〉, Ψκ
m = Ψmjk = 〈Ψj,k, em〉,

hm,� = 〈h�, em〉, ym,� =
∫
R

em(t)dY�(t), zm,� =
∫
R

em(t)dBH�
(t),

fm = 〈f, em〉, gm,� = 〈g�, em〉, � = 1, 2, . . . ,M. (10)

Applying the Fourier transform to (1), we get the following sequence space model

ym,� = hm,� + σ�

nα�/2
zm,l, m ∈ Z, � = 1, 2, . . . ,M ; (11)

hm,� = gm,�fm, m ∈ Z, � = 1, 2, . . . ,M ; (12)

where, for each �, σ� are known positive constants and the structure of the Fourier coefficients, gm,�fm =
K̃�f(m), is given by (3) and (4) for the smooth-type and box-car convolutions respectively. Following a
similar procedure to [3], weights γm,�gm,� are multiplied to the hm,� coefficients and added together (where
γm,� are weights to be specified later). Thus (12) leads to the following expression for the target function
coefficients,

fm =
∑M

�=1 γm,�gm,�hm,�∑M
�=1 γm,�|gm,�|2

, m ∈ Z.

Furthermore using the Parseval identity one can obtain the wavelet coefficients,

bκ =
∫
T

f(t)Ψκ(t) dt =
∑
m∈Z

fmΨκ
m =

∑
m∈Z

∑M
�=1 γm,�gm,�hm,�∑M
�=1 γm,�|gm,�|2

Ψκ
m

which can be estimated using (11) with

b̂κ =
∑ ∑M

�=1 γm,�gm,�ym,�∑M
γm,�|gm,�|2

Ψκ
m, (13)
m∈Cj �=1
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where Cj denotes the domain of the Meyer wavelet in the Fourier domain,

Cj =
{
a ∈ Z : ±a ∈

{⌈
2j

3

⌉
,

⌈
2j

3

⌉
+ 1, . . . ,

⌊
2j+2

3

⌋}}
, (14)

where j ≥ 0. The scaling coefficients aκ =
∫
T
f(t)Φκ(t) dt and their estimates âκ are defined in a similar

manner.
Estimators: A non-linear estimator f̂n(·) of f(·) based on hard thresholding of a wavelet expansion is as
follows:

f̂n(t) =
2j0−1∑
k=0

âj0,kΦj0,k(t) +
∑
κ∈Λ

b̂κ1{|b̂κ|≥λ}Ψκ(t), t ∈ T, (15)

where 1A denotes the indicator function of the set A, the index range, Λ = Λn, the coarse scale level j0 and
the threshold parameter λ = λj are forthcoming.

A linear (projection) wavelet estimator f̂n(·) of f(·) with coarse scale level j0 is

f̂n(t) =
2j0−1∑
k=0

âj0,kΦj0,k(t). (16)

Resolution levels: The range of resolution levels (frequencies) is given by

Λn =
{
(j, k), j0 ≤ j ≤ j1, 0 ≤ k ≤ 2j − 1

}
.

The coarse scale j0 is defined in the super-smooth case as,

2j0 �
(

(α�∗ − ε) logn
2θ�∗

)1/β�∗

(17)

where ε > 0 is small, θ� is the super-smooth parameter defined in (3) and �∗ is given by (5). For the
regular-smooth and box-car case the parameter j0 is not important for the asymptotic convergence of the
estimator and we set j0 = −1. The fine scale level j1 is important for the asymptotic convergence results in
these cases and is set to be,

2j1 �
(
nα�∗

log n

)1/(2ν∗+1)

(18)

for regular-smooth convolutions and

2j1 �
(

nα∗

log n

)1/(2ν̃∗+1)

(19)

for box-car convolutions, where α∗, ν∗, ν̃∗ and �∗ are defined in (7), (6), (8) and (5) respectively. The fine
resolution level j1 in (18) coincides with the level given by [20] for the case when M = 1, ν1 = ν and α1 = α.

Thresholds: To ease the presentation and include both the regular-smooth and box-car cases, define

ξ =
{
α�∗ , in the case of regular-smooth deconvolutions;
α∗, in the case of box-car deconvolutions.

Then the scale level threshold values λ = λj are given by
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λj = ζ τj cn, (20)

where the three input parameters are specified as:

• ζ: a smoothing parameter, ζ > 2
√

(p ∨ 2)2ξ.
• cn: a sample size-dependent scaling factor,

cn =
√

logn
nξ

. (21)

• τj : a level-dependent scaling factor,

τ2
j = nξ

∑
m∈Cj

∣∣Ψκ
m

∣∣2( M∑
�=1

σ−2
� nα� |m|2H�−1|gm,�|2

)−1

. (22)

In practical applications, the noise levels σ�; � = 1, 2, . . . ,M ; are usually unknown. In this case, estimate
each σ� by σ̂� and define

τ̂2
j = nξ

∑
m∈Cj

∣∣Ψκ
m

∣∣2( M∑
�=1

σ̂−2
� nα� |m|2H�−1|gm,�|2

)−1

. (23)

This expression is used in the simulation study conducted in Section 4. Note that the above thresholds λj

defined in (20) coincide with the ones defined in [3] (M ≥ 2, α∗ = 1).

4. Upper bound results of the adaptive wavelet thresholding and linear estimators

Consider first the smooth convolutions scenario. In this case, the regular-smooth and super-smooth cases
are handled when θ� = 0 or θ� > 0 respectively. The super-smooth case is similar to estimating analytic
functions with a slow convergence rate. In this scenario linear estimators obtain the optimal (in the minimax
sense) convergence rates and hence a linear (projection) wavelet estimator with an appropriate primary
resolution level j0 suffices.

Theorem 1. Consider the model described by (1) with f ∈ Bs
π0,r(T ) with π0 ≥ 1, s ≥ 1

π0
. If θ� = 0 for each

� = 1, 2, . . . ,M ; (regular-smooth case) then consider

0 < r ≤ r0 = min
{

p(2ν∗ + 1)
2(ν∗ + s) + 1 ,

(2ν∗ + 1)p− 2
2(ν∗ + s) − 2/π0 + 1

}
(24)

and the adaptive wavelet estimator f̂n defined in (15) with the index range Λ = Λn defined by (18) and
threshold value λ = λj defined by (20) for some ζ > 2

√
(p ∨ 2)2α�∗ with τj and cn given, respectively,

by (22) and (21). If θ� > 0 for each � = 1, 2, . . . ,M ; (super-smooth case) then consider r > 0 and the
linear projection wavelet estimator defined in (16) with coarse scale level, j0, given by (17). Let p > 1 be an
arbitrary finite real number. Then, there exists a constant C > 0 such that for all n ≥ 1,

E‖f̂n − f‖pp ≤ C

(
logn
nδ

)

,

where in the regular-smooth case θ�∗ = 0 and δ = 1 with
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� = α�∗sp

2(s + (2ν∗ + 1)/2) , if s ≥ (2ν∗ + 1)
2

(
p

π0
− 1
)

; (25)

� = α�∗p(s− 1/π0 + 1/p)
2(s− 1/π0 + (2ν∗ + 1)/2) , if 1

π0
− ν∗ −

1
2 ≤ s <

(2ν∗ + 1)
2

(
p

π0
− 1
)

; (26)

while in the super-smooth case, θ�∗ > 0 and δ = 0 with,

� = −ps∗/β�∗ where β�∗ > 0 (27)

and s∗ = s + 1/p− 1/min(p, π0) and �∗ is defined with (5).

Now, consider box-car convolutions scenario. Recall α∗ defined by (7) and ν∗ is now replaced with ν̃∗
defined by (8). For the definitions of the ‘Badly Approximable’ (BA) irrational number and the BA irrational
tuple that we used in the following statement, see, e.g., p. 22 and p. 42 of [28].

Theorem 2. Consider the model described by (1) and the wavelet estimator f̂n defined in (15) with the index
range Λ = Λn defined by (19) and threshold value λ = λj defined by (20) for some ζ > 2

√
(p ∨ 2)2α∗ with

τj and cn given, respectively, by (22) and (21). Let p > 1 be an arbitrary finite real number and assume
that one of the c1, c2, . . . , cM is a BA irrational number and that c1, c2, . . . , cM (M ≥ 2) is a BA irrational
tuple. If f ∈ Bs

π0,r(T ) with π0 ≥ 1, s ≥ 1
π0

− ν̃∗ − 1/2 and r satisfying (24) with ν∗ replaced with ν̃∗, then,
in this case, the result of Theorem 1 still holds with δ = 1 and

� = α∗sp

2(s + (2ν̃∗ + 1)/2) , if s ≥ (2ν̃∗ + 1)
2

(
p

π0
− 1
)

; (28)

� = α∗p(s− 1/π0 + 1/p)
2(s− 1/π0 + (2ν̃∗ + 1)/2) , if 1

π0
− ν̃∗ −

1
2 ≤ s <

(2ν̃∗ + 1)
2

(
p

π0
− 1
)

; (29)

where ν̃∗ is defined by (8) and α∗ is defined by (7).

Remark 1. There is an elbow effect or phase transition in the upper bound on the Lp-risk (1 ≤ p < ∞) in
both the regular-smooth and box-car convolutions. Namely, in the regular-smooth case switching from (25)
to (26) as the assumed smoothness decreases; and similarly switching from (28) to (29) in the box-car case.
The two regimes are usually referred to as the dense and sparse regions respectively (see [14] and [3] for
the case with independent Brownian motion errors). The upper bound results obtained in Theorem 1 for
the regular-smooth case and in Theorem 2 for the box-car case show that the boundary region of s depends
on the LRD indices α�, � = 1, 2, . . . ,M ; and the sparse region is smaller in the case where the errors follow
independent fBms.

Remark 2. Single Channel, M = 1: For ν∗ = ν1 = 0, the upper bounds obtained on the Lp-risk (1 ≤ p < ∞)
in Theorem 1 agree with existing optimal rate results (up to a logarithmic factor) for wavelet regression with
long-memory errors obtained by [1], (minimax L2-risk) and [19] (upper bounds on the Lp-risk, 1 ≤ p < ∞).
Similarly, when ν∗ = ν1 > 0 the results also agree with [2] (minimax L2-risk, p = 2) and [20] (upper bounds
on the Lp-risk, 1 ≤ p < ∞). Multichannel, M > 1: Our results generalise the results in [3] and include the
results of their case when α∗ = 1 (upper bounds on the Lp-risk, 1 ≤ p < ∞).

Remark 3. As expected, the upper bounds deteriorate in the regular-smooth and box-car cases when ν�∗
increases (larger DIP) or when α�∗ decreases (stronger LRD). The combined effect of ν�∗ and α�∗ on the
location of the elbow is reverse as the sparse region increases with both ν�∗ and α�∗ . Consistent with
the literature, the super-smooth case has a logarithmic convergence rate with indices that depend on the
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underlying smoothness in s∗ and the severity of the super-smooth decay in β�∗ . The upper bounds on the
Lp-risk (1 ≤ p < ∞) in the super-smooth case do not depend on ν�∗ or α�∗ .

Remark 4. Our upper bounds on the Lp-risk (for p = 2) are not directly comparable to the maximal upper
bounds obtained in [21]. In that paper the framework is different whereby the number of channels M depends
on the number of total observations, n, in each channel (i.e. M = Mn). However, in our case the number of
channels is fixed and not dependent on n. Our results are comparable to the works of [3,20] demonstrating
both the effects of the number of channels and the LRD on the upper bounds on the Lp-risk (1 ≤ p < ∞).

5. Simulation study

A simulation study for p = 2 is conducted for the regular-smooth scenario and is heavily based on the
algorithm in the WaveD R-package of [10]. In the regular smooth scenario, it is crucial to know �∗, the ‘best
channel’, since it appears in both the smoothing parameter ζ and in the fine scale level j1. The fine scale
parameter is particularly important since it truncates the wavelet expansion early enough to ensure an
accurate yet reliable algorithm. Methods have been established for choosing j1 in practice for the single
channel regular Brownian motion case by [29] and expanded to the single channel LRD case by [20]. The
method is sketched below and the interested reader is referred to those papers for a more in-depth treatment.

The method assumes the practitioner can pass the Fourier basis, f = {eu}u∈Z, into (1) and denote this
new information with,

dY̆�(x) = g� ∗ eu(x) + σ�n
−α�/2dBH�

(x).

Due to the orthogonality of the Fourier basis, the Fourier domain representation of Y̆� is

y̆m,� =
∫
R

em(x)dY̆�(x) = gm,� + σ�n
−α�/2wm,�

where wm,� is identically distributed to but independent of zm,� (recall (10) for the definition of zm,�). Then
an estimate of j�,1 � (nα�/ logn)1/(α�+2ν�) is constructed with,

ĵ�,1 = �log2 F�� − 1

where the stopping time F� is determined in the Fourier domain with F� = min{ω, ω > 0 : |y̆ω,�| ≤
ωα/2ε� log ε−2

� } and ε� := σ�n
−α�/2. The estimate ĵ�,1 is close to j�,1 with high probability due to Lemma 1

in [20].
Then define the overall fine scale estimator with,

ĵ1 = max
1≤�≤M

ĵ�,1, (30)

since the optimal channel defined with

�∗ := arg max
1≤�≤M

{(
nα�

log n

)1/(α�+2ν�)}
,

is equivalent to the optimal channel �∗ defined in (5). For the same reason, the best channel is estimated as
the one with the largest stopping time,

�̂∗ = arg maxF�. (31)

1≤�≤M
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The theory suggests that the smoothing parameter should satisfy the bound, ζ > 4√α�∗ when p = 2.
However, as will become evident in the simulations a smaller choice for ζ results in improved numerical
performance. This smaller choice of smoothing parameter compared to the theory is consistent with other
numerical results of [14] and [20]. The signals used in the simulations are the standard LIDAR, Doppler,
Bumps and Blocks functions that have been used consistently throughout the literature (cf. [30,29]).

The steps for a simulation study are then as follows:

1. We choose f(·) to be the Doppler, LIDAR, Bumps or Blocks functions.
2. Choose M , n, ν� and the set of dependence parameters α� for each l = 1, 2, . . . ,M ; and n = 2J for

J = 12.
3. Generate M independent FARIMA sequences of length n. Each sequence is standardised, to have the

same signal-to-noise ratio,

SNR = 10 log10
(
‖g� ∗ f‖2/σ2

�

)
for three scenarios where SNR = 10 dB (high noise), 20 dB (medium noise) or 30 dB (low noise). This
means that the level of noise compared to the blurred signal is standardised. To simulate the dependent
sequence, we use the R-package fracdiff and the R-function fracdiff.sim.

4. Estimate the highest permissible scale level, ĵ1 by using the estimator ĵ1 defined in (30).
5. Estimate the ‘best channel’ from the noisy data using (31) with σ� replaced with σ̂�. Then set the

smoothing parameter ζ.
6. Compute b̂κ using the formula (13) with level-depending thresholds λj = ζτ̂jcn defined in (20), where

τ̂j and cn are given (23) and (21), respectively. The noise level in each channel is estimated using the
MAD of the wavelet coefficients at the highest scale level (J − 1).

7. Compute the above estimates repeatedly to obtain an empirical version of the RMSE with,

M̂SE(f̂ , f) = Ê‖f̂ − f‖2 = 1
m

m∑
i=1

‖f̂i − f‖2

where m = 1024.

The results of the simulations are populated in Tables 1–4.

Comments and analysis

The numerical study is considered for three particular contexts. Namely, the effect of the severity of
LRD, the effect of multiple channels and the degree of ill-posedness. The method is also compared with
using the standard WaveD estimator on the ‘best channel’ in the sense of the algorithm posed at the start of
this section. The results are contained in Tables 1–4. Simulations were conducted for a large range of noise
levels with SNR = 10, 15, 20, 25 and 30 dB but are omitted due to space constraints. The estimates at other
noise levels showed similar results to those displayed here and did not add further to the concepts being
discussed below.

Performance of our method (and the WaveD method) is reliant on two key steps. The most important step
is choosing the fine scale level j1 to truncate the expansion at the highest allowable level before performance
deteriorates. A less important but still crucial step is to choose the smoothing parameter ζ appropriately
(the smoothing parameter η for the WaveD algorithm is fixed at its default of

√
6).

To demonstrate both the role of j1 and ζ, the RMSE of the estimators in all the forthcoming contexts are
presented inside the cells of the tables with the average fine scale level ĵ1 shown in parenthesis. The values
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Table 1
RMSE for estimates when ν = 0.3 at mild levels of strong dependence when the number of channels (M) increases.

ν = 0.3 α = 1 α = 0.8 α = 0.6
M = 1 M = 2 M = 3 M = 1 M = 2 M = 3 M = 1 M = 2 M = 3
LIDAR: SNR 20 dB

√
α�∗ 0.054 (7) 0.045 (7) 0.041 (7) 0.064 (7) 0.052 (7) 0.046 (7) 0.081 (7) 0.064 (7) 0.056 (7)

4√α�∗ 0.073 (7) 0.06 (7) 0.052 (7) 0.08 (7) 0.065 (7) 0.057 (7) 0.093 (7) 0.074 (7) 0.065 (7)
WaveD 0.06 (7) 0.059 (7) 0.059 (7) 0.064 (7.6) 0.064 (7.8) 0.064 (7.9) 0.083 (8) 0.084 (8) 0.084 (8)

Doppler: SNR 20 dB
√
α�∗ 0.039 (8) 0.03 (8) 0.026 (8) 0.048 (8) 0.036 (8) 0.031 (8) 0.062 (8) 0.046 (8) 0.039 (8)

4√α�∗ 0.056 (8) 0.044 (8) 0.036 (8) 0.059 (8) 0.046 (8) 0.038 (8) 0.064 (8) 0.05 (8) 0.041 (8)
WaveD 0.046 (8) 0.045 (8) 0.045 (8) 0.047 (8) 0.047 (8) 0.047 (8) 0.057 (8) 0.058 (8) 0.058 (8)

Bumps: SNR 20 dB
√
α�∗ 0.275 (7) 0.27 (7) 0.268 (7) 0.28 (7) 0.273 (7) 0.27 (7) 0.288 (7) 0.278 (7) 0.274 (7)

4√α�∗ 0.279 (7) 0.273 (7) 0.271 (7) 0.282 (7) 0.276 (7) 0.273 (7) 0.289 (7) 0.279 (7) 0.276 (7)
WaveD 0.276 (7) 0.276 (7) 0.275 (7) 0.253 (7.2) 0.231 (7.4) 0.215 (7.6) 0.189 (8) 0.188 (8) 0.188 (8)

Blocks: SNR 20 dB
√
α�∗ 0.373 (6) 0.365 (6) 0.363 (6) 0.384 (6) 0.371 (6) 0.367 (6) 0.502 (5) 0.492 (5) 0.489 (5)

4√α�∗ 0.397 (6) 0.373 (6) 0.366 (6) 0.414 (6) 0.382 (6) 0.372 (6) 0.508 (5) 0.495 (5) 0.49 (5)
WaveD 0.376 (6) 0.376 (6) 0.376 (6) 0.385 (6) 0.385 (6) 0.385 (6) 0.408 (6) 0.408 (6) 0.409 (6)

Table 2
RMSE for estimates when ν = 0.3 at severe levels of strong dependence when the number of channels (M) increases.

ν = 0.3 α = 0.5 α = 0.3 α = 0.1
M = 1 M = 2 M = 3 M = 1 M = 2 M = 3 M = 1 M = 2 M = 3
LIDAR: SNR 20 dB

√
α�∗ 0.094 (7) 0.073 (7) 0.063 (7) 0.115 (6) 0.089 (6) 0.077 (6) 0.192 (6) 0.141 (6) 0.118 (6)

4√α�∗ 0.102 (7) 0.081 (7) 0.07 (7) 0.122 (6) 0.098 (6) 0.084 (6) 0.164 (6) 0.126 (6) 0.107 (6)
WaveD 0.103 (8) 0.105 (8) 0.105 (8) 0.168 (8) 0.169 (8) 0.171 (8) 0.271 (8) 0.273 (8) 0.273 (8)

Doppler: SNR 20 dB
√
α�∗ 0.072 (7.7) 0.054 (7.9) 0.045 (8) 0.091 (7) 0.073 (7) 0.066 (7) 0.153 (7) 0.113 (7) 0.097 (7)

4√α�∗ 0.068 (7.7) 0.053 (7.9) 0.044 (8) 0.08 (7) 0.065 (7) 0.059 (7) 0.111 (7) 0.086 (7) 0.076 (7)
WaveD 0.069 (8) 0.07 (8) 0.07 (8) 0.107 (8) 0.109 (8) 0.109 (8) 0.17 (8) 0.171 (8) 0.172 (8)

Bumps: SNR 20 dB
√
α�∗ 0.294 (7) 0.281 (7) 0.276 (7) 0.469 (6) 0.461 (6) 0.458 (6) 0.496 (6) 0.475 (6) 0.467 (6)

4√α�∗ 0.294 (7) 0.282 (7) 0.278 (7) 0.467 (6) 0.461 (6) 0.458 (6) 0.489 (6) 0.472 (6) 0.466 (6)
WaveD 0.201 (8) 0.201 (8) 0.202 (8) 0.246 (8) 0.247 (8) 0.248 (8) 0.329 (8) 0.331 (8) 0.33 (8)

Blocks: SNR 20 dB
√
α�∗ 0.511 (5) 0.497 (5) 0.492 (5) 0.82 (4) 0.808 (4) 0.804 (4) 1.116 (3) 1.094 (3) 1.087 (3)

4√α�∗ 0.518 (5) 0.5 (5) 0.494 (5) 0.823 (4) 0.809 (4) 0.805 (4) 1.116 (3) 1.094 (3) 1.087 (3)
WaveD 0.43 (6) 0.43 (6) 0.43 (6) 0.506 (6) 0.507 (6) 0.507 (6) 0.68 (6.1) 0.691 (6.3) 0.697 (6.3)

of ζ are given in the first column (with WaveD denoting the standard WaveD estimator in the best possible
channel).

Theoretical arguments suggest that ζ should be at least greater than 4√α�∗ for p = 2. Simulations were
conducted for more liberal and conservative choices of ζ with ζ ∈ (√α�∗ , 8

√
α�∗). In almost all cases, the

performance was optimal using the smaller choice of ζ = √
α�∗ . The exceptions generally being when the

dependence was considerably strong (α < 0.3) and M = 1.
As is consistent with [20], allowing higher scales can capture more transient features of a signal but can be

at the cost of spurious effects of LRD noise being included. Sometimes early truncation can be beneficial to
performance or detrimental to performance based on the features of the signal. For example, the estimation
performance on the LIDAR and Doppler signals benefits from the earlier truncation but is detrimental to the
estimation of the Bumps and Blocks signals. In the latter estimated signals, the captured transient features
at higher scales outweigh the potential loss incurred from including spurious LRD noise effects. A potential
reason that the LIDAR signal is estimated well in the multichannel method in simulations compared to the
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Table 3
RMSE for estimates when ν = 0.5 at mild levels of strong dependence when the number of channels (M) increases.

ν = 0.5 α = 1 α = 0.8 α = 0.6
M = 1 M = 2 M = 3 M = 1 M = 2 M = 3 M = 1 M = 2 M = 3
LIDAR: SNR 20 dB

√
α�∗ 0.073 (6) 0.062 (6) 0.056 (6) 0.085 (6) 0.07 (6) 0.063 (6) 0.104 (6) 0.085 (6) 0.075 (6)

4√α�∗ 0.094 (6) 0.081 (6) 0.073 (6) 0.103 (6) 0.088 (6) 0.08 (6) 0.122 (6) 0.1 (6) 0.09 (6)
WaveD 0.083 (6) 0.082 (6) 0.083 (6) 0.086 (6) 0.086 (6) 0.086 (6) 0.105 (6.1) 0.106 (6.2) 0.107 (6.2)

Doppler: SNR 20 dB
√
α�∗ 0.059 (7) 0.053 (7) 0.051 (7) 0.067 (7) 0.058 (7) 0.054 (7) 0.084 (6.9) 0.067 (7) 0.061 (7)

4√α�∗ 0.076 (7) 0.061 (7) 0.056 (7) 0.082 (7) 0.065 (7) 0.059 (7) 0.092 (6.9) 0.071 (7) 0.063 (7)
WaveD 0.065 (7) 0.064 (7) 0.064 (7) 0.067 (7) 0.067 (7) 0.067 (7) 0.078 (7) 0.078 (7) 0.078 (7)

Bumps: SNR 20 dB
√
α�∗ 0.457 (6) 0.455 (6) 0.453 (6) 0.461 (6) 0.457 (6) 0.455 (6) 0.467 (6) 0.46 (6) 0.458 (6)

4√α�∗ 0.457 (6) 0.456 (6) 0.455 (6) 0.461 (6) 0.457 (6) 0.456 (6) 0.467 (6) 0.46 (6) 0.458 (6)
WaveD 0.457 (6) 0.457 (6) 0.457 (6) 0.441 (6.1) 0.429 (6.2) 0.418 (6.3) 0.332 (6.9) 0.319 (7) 0.318 (7)

Blocks: SNR 20 dB
√
α�∗ 0.494 (5) 0.488 (5) 0.486 (5) 0.505 (5) 0.494 (5) 0.49 (5) 0.807 (4) 0.801 (4) 0.8 (4)

4√α�∗ 0.506 (5) 0.493 (5) 0.489 (5) 0.519 (5) 0.501 (5) 0.494 (5) 0.811 (4) 0.803 (4) 0.801 (4)
WaveD 0.497 (5) 0.497 (5) 0.497 (5) 0.506 (5) 0.506 (5) 0.506 (5) 0.527 (5) 0.528 (5) 0.528 (5)

Table 4
RMSE for estimates when ν = 0.5 at severe levels of strong dependence when the number of channels (M) increases.

ν = 0.5 α = 0.5 α = 0.3 α = 0.1
M = 1 M = 2 M = 3 M = 1 M = 2 M = 3 M = 1 M = 2 M = 3
LIDAR: SNR 20 dB

√
α�∗ 0.11 (5) 0.094 (5) 0.087 (5) 0.142 (5) 0.115 (5) 0.103 (5) 0.215 (4) 0.184 (4) 0.172 (4)

4√α�∗ 0.134 (5) 0.109 (5) 0.097 (5) 0.163 (5) 0.128 (5) 0.113 (5) 0.214 (4) 0.185 (4) 0.173 (4)
WaveD 0.134 (6.5) 0.14 (6.7) 0.142 (6.9) 0.243 (7) 0.246 (7) 0.246 (7) 0.399 (7) 0.401 (7) 0.4 (7)

Doppler: SNR 20 dB
√
α�∗ 0.104 (6) 0.097 (6) 0.094 (6) 0.122 (6) 0.107 (6) 0.101 (6) 0.183 (5) 0.166 (5) 0.16 (5)

4√α�∗ 0.106 (6) 0.098 (6) 0.095 (6) 0.115 (6) 0.103 (6) 0.099 (6) 0.172 (5) 0.161 (5) 0.156 (5)
WaveD 0.091 (7) 0.092 (7) 0.092 (7) 0.14 (7) 0.141 (7) 0.141 (7) 0.216 (7) 0.218 (7) 0.218 (7)

Bumps: SNR 20 dB
√
α�∗ 0.688 (5.2) 0.643 (5.3) 0.611 (5.4) 0.742 (5) 0.736 (5) 0.734 (5) 0.88 (4) 0.873 (4) 0.871 (4)

4√α�∗ 0.689 (5.2) 0.643 (5.3) 0.611 (5.4) 0.743 (5) 0.736 (5) 0.734 (5) 0.88 (4) 0.873 (4) 0.871 (4)
WaveD 0.334 (7) 0.334 (7) 0.334 (7) 0.387 (7) 0.389 (7) 0.389 (7) 0.487 (7) 0.488 (7) 0.488 (7)

Blocks: SNR 20 dB
√
α�∗ 0.813 (4) 0.805 (4) 0.802 (4) 1.085 (3) 1.078 (3) 1.075 (3) 1.126 (3) 1.098 (3) 1.089 (3)

4√α�∗ 0.819 (4) 0.807 (4) 0.803 (4) 1.086 (3) 1.078 (3) 1.075 (3) 1.129 (3) 1.099 (3) 1.089 (3)
WaveD 0.548 (5) 0.549 (5) 0.549 (5) 0.625 (5) 0.626 (5) 0.625 (5) 0.796 (5) 0.798 (5) 0.8 (5)

similar Blocks signal is the close proximity of the jumps combined with the early truncation (small j1)
in the expansion. The WaveD does not truncate early to avoid the LRD effects and hence captures the
jumps better (cf. Figs. 1 and 2). Finally in the Bumps signal, the WaveD method consistently outperformed
the multichannel estimator (except with the liberal choice with ζ = 1 when α�∗ = 1). This makes sense
since the captured high frequency local features of the Bumps signal used with a larger j1 outweigh the loss
incurred by spurious LRD effects. All of the aforementioned points are evident across Tables 1–4 and shown
visually as particular cases in Figs. 1 and 2.

Supporting the theory and being consistent with previous results in the literature, as the degree of
ill-posedness increases (ν increases), the performance of estimation deteriorates. This is demonstrated by
comparing results from Tables 1–2 with the results in Tables 3–4.

In the same vein, as the level of dependence increases (α decreases), the performance deteriorates. Study-
ing Tables 1–4 in more detail, consider the effect of α while keeping M fixed and ν fixed. As is consistent
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with the theoretical upper bound on rates of convergence established in Section 4, the convergence rate
deteriorates as the level of dependence increases (α decreases).

The theory also suggests that the convergence rate only relies on the best available channel. However,
numerically this doesn’t seem to be the case. Interestingly, when keeping the dependence and DIP levels
fixed across multiple channels, the inclusion of more channels (increasing M) generally results in improved
estimation performance for the multichannel estimator in all signals while the WaveD estimator has the same
performance across multiple channels. This should not seem surprising since the WaveD estimator is only
used the ‘best channel’ meaning only n = 4096 observations are being used each time. The multichannel
estimator though is using a weighted average of all channels using 4096, 8192 and 12 288 observations
respectively in the M = 1, 2 and 3 scenarios.

6. Conclusion

In this paper we considered multichannel deconvolution with errors following fractional Brownian mo-
tions, with different Hurst parameters. We established upper bounds on the Lp-risk (1 ≤ p < ∞) for the
non-linear wavelet estimators for regular-smooth and box-car convolutions and linear wavelet estimator for
super-smooth convolutions. In particular, we extended the findings from [3] and demonstrated that they
are no longer valid in the LRD set-up. That is, in the box-car case adding new channels is beneficial for the
upper bound only if the additional channel isn’t outweighed by the dependence in the sense of ν̃∗ defined
in (8) and the upper bound in Theorem 2. While in the regular-smooth case, adding new channels might
perhaps improve the upper bound. An improved upper bound would arise if the α and DIP parameters
in the new channel are better in the sense of (5). In both regular-smooth and box-car cases though, LRD
affects upper bounds which is consistent with previous findings in [2,19] and [20]. In the super-smooth case,
adding new channels is also beneficial, however, the upper bounds do not involve LRD.

We supported our theoretical findings by extensive simulations studies for the regular-smooth case using
the Lp-risk for p = 2. We found that adding new channels improves performance, especially for severe levels
of LRD. On the other hand, the optimal choice of threshold level was in some instances different than the one
suggested by the theory. The optimal choice highly depends on the underlying signal. One has to remember
though, that the established theory is asymptotic in nature, whereas simulations studies are based on finite
sample properties. This explains the aforementioned discrepancy.

A possible direction for future research is to explore and extend our upper bounds to minimax type rates
towards the direction of [21] obtained for the L2-risk in the discrete model when the number of channels,
M , also depend on the total number of observations n, i.e., M = Mn.

7. Proofs

We provide technical details for the proofs of Theorems 1 and 2. In the regular-smooth and box-car cases,
the proofs are based on the maxiset theorem (see Theorem 6.1 in [31]). The steps are similar to those of
[14] and [3], with necessary modifications. In the super-smooth case we do not need the maxiset theorem
but proceed according to [32] and consider the Lp-risk (1 ≤ p < ∞) directly.

7.1. Stochastic analysis of estimated wavelet coefficients

By definition, it is clearly seen that the estimated wavelet coefficients have no bias. Consider now the
covariance structure of the z·� process where zm,� =

∫
R
em(t)dBH�

(t). It is assumed that, BH�
is independent

of BH′
�

for � �= �′. This has the immediate consequence that, Cov(zm�, zm′�′) = 0 for � �= �′. Using the results
of Section 5.2 of [20], the covariance of the fBm coefficients within each channel is,
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Cov(zm�, zm′�) = |mm′|1/2−H�

∑
κ′

ψκ′

mψκ′
m′ , (32)

where ψ is the Meyer wavelet and κ′ = (j′, k′).
The result in (32) would seem to imply that the covariance matrix of zm� is non-trivial. However, applying

Lemma 1, the covariance matrix reduces to

Cov(zm�, zm′�) = |mm′|1/2−H�

∑
j∈Z

1{m−m′
2j

∈Z}ψm2−jψm′2−j . (33)

Thus we are in a position to bound the variance of the estimated wavelet coefficients (recall γm,� are
weighting constants),

Var(̂bκ) = Var
(
bκ +

∑
m∈Cj

M∑
�=1

γm,�n
−α�/2σ�gm,�zm�∑M

�=1 γm,�|gm,�|2
Ψκ
m,

)

=
M∑
�=1

∑
m,m′∈Cj

γm,�γm′,�σ
2
�n

−α� |mm′|1/2−H�gm,�gm′,�Ψκ
mΨκ

m

(
∑M

�=1 γm,�|gm,�|2)(
∑M

�=1 γm′,�|gm′,�|2)

×
∑
j′∈Z

1{m−m′
2j

∈Z}ψm2−j′ψm′2−j′ , (34)

where the second last line follows by (33) and the independence of the fBms. Apply Lemma 2 to (34) yields,

Var(̂bκ) =
M∑
�=1

∑
m∈Cj

γ2
m,�σ

2
�n

−α� |m|1−2H� |gm,�|2|Ψκ
m|2

(
∑M

�=1 γm,�|gm,�|2)2
. (35)

Using the Cauchy Schwarz-inequality we have,

(
M∑
�=1

γm,�|gm,�|2
)2

≤
(

M∑
�=1

γ2
m,�σ

2
�n

−α� |m|1−2H� |gm,�|2
)(

M∑
�=1

σ−2
� nα� |m|2H�−1|gm,�|2

)

with equality only if γm,� = γ∗
m,� := nα�σ−2

� |m|2H�−1. Use these choice of optimal weights, γ∗
m,�, starting

with the case of regular-smooth convolution,

Var(̂bκ) =
∑

m∈Cj

∣∣Ψκ
m

∣∣2 M∑
�=1

γ2
m,�σ

2
�n

−α� |m|1−2H� |gm,�|2

(
∑M

�=1 γm,�|gm,�|2)2

=
∑

m∈Cj

∣∣Ψκ
m

∣∣2( M∑
�=1

σ−2
� nα� |m|2H�−1|gm,�|2

)−1

≤ C

∫
R

∣∣Ψ(x)
∣∣2 dx( M∑

�=1

nα� inf
x∈Cj

|x|2H�−1 inf
y∈Cj

|gy,�|2
)−1

= O
((

M∑
�=1

nα�2j(1−α�−2ν�)

)−1)

= O
(

min n−α�2−j(1−α�−2ν�)
)
.

1≤�≤M
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Consider the case of box-car convolution. In particular, for x ∈ R define the distance to the nearest integer,
‖x‖ := inf{|x− r| : r ∈ Z}. Then bounds can be given on the box-car Fourier coefficients with,∣∣∣∣2‖mc�‖

πmc�

∣∣∣∣ ≤ |gm,�| ≤
∣∣∣∣‖mc�‖
mc�

∣∣∣∣,
(see for example, p. 298 of [3]). Using this bound with the same optimal weights γ∗

m,� and the bound
|Ψκ

m| ≤ 2−j with (35),

Var(̂bκ) =
∑

m∈Cj

∣∣Ψκ
m

∣∣2( M∑
�=1

σ−2
� nα� |m|2H�−1|gm,�|2

)−1

≤ 2
π

2−jn−α∗
∑

m∈Cj

m2

(
M∑
�=1

c−2
� σ−2

� |m|2H�−1‖mc�‖2

)−1

= O
(

2j(α
∗−2)n−α∗

∑
m∈Cj

m2

(
M∑
�=1

‖mc�‖2

)−1)

= O
(
n−α∗j2j(1+α∗+1/M)).

The last bound follows from a result in the proof of Lemma 4 in [3] where,

∑
m∈Cj

m2

(
M∑
�=1

‖mc�‖2

)−1

= O
(
j2j(3+1/M)).

Consider the final case of the super smooth convolution. Using similar arguments it can be shown,

Var(âκ) =
∑

m∈Cj

∣∣Φκ
m

∣∣2( M∑
�=1

σ−2
� nα� |m|2H�−1|gm,�|2

)−1

≤ C
∑

m∈Cj

∣∣Φκ
m

∣∣2( M∑
�=1

nα� inf
x∈Cj

|x|2H�−1 inf
y∈Cj

|gy,�|2
)−1

= O
((

M∑
�=1

nα�2j(1−α�) inf
y∈Cj

|y|−2γ�e−2θ�|y|β�

)−1)

= O
(

min
1≤�≤M

n−α�2−j(1−α�−2ν�)e2θ�2jβ�
)
. (36)

7.2. The maxiset theorem

For completeness, we give the statement of the following theorem that is borrowed from Theorem 6.1
in [31]. We also refer to Section 7.3 below for the definition of the Temlyakov property. First, we introduce
some notation: μ will denote the measure such that for j ∈ N, k ∈ N and 0 < q < p,

μ
{
(j, k)

}
= ‖τjψj,k‖pp = τpj 2j(

p
2−1)‖ψ‖pp,

lq,∞(μ) =
{
f ∈ Lp, sup

λ>0
λqμ
{
(j, k) : |bj,k| > τjλ

}
< ∞

}
.
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Theorem 3. Let p > 1, 0 < q < p, {ψj,k, j ≥ −1, k = 0, 1, . . . , 2j} be a periodised wavelet basis of L2(T ),
T = [0, 1], and τj be a positive sequence such that the heteroscedastic basis τjψj,k satisfies the Temlyakov
property. Suppose that Λn is a set of pairs (j, k) and that cn is a deterministic sequence tending to zero with

sup
n

μ{Λn} cpn < ∞. (37)

If, for any n and any pair κ = (j, k) ∈ Λn, we have

E|̂bκ − bκ|2p ≤ C(τjcn)2p, (38)

P
(
|b̂κ − bκ| ≥ ητjcn/2

)
≤ C
(
c2pn ∧ c4n

)
, (39)

for some positive constants η and C, then, the wavelet based estimator

f̂n(t) =
∑
κ∈Λn

b̂κ1{|b̂κ|≥ητjcn}ψκ(t), t ∈ T, (40)

is such that, for all positive integers n,

E‖f̂n − f‖pp ≤ C cp−q
n ,

if and only if

f(·) ∈ lq,∞(μ), (41)

and

sup
n

cq−p
n

∥∥∥∥f −
∑
κ∈Λn

bκψκ

∥∥∥∥p
p

< ∞. (42)

This theorem identifies the ‘maxiset’ of a general wavelet thresholding estimator of the form (40). This
is done by using conditions (41) and (42) for an appropriate choice of q. In the proofs of Theorems 1 and 2,
we will choose q according to the dense or the sparse regions as follows

q = qd := (2ν∗ + 1)p
2s + 2ν∗ + 1 , if s ≥ 2ν∗ + 1

2

(
p

π0
− 1
)

(43)

q = qs := (2ν∗ + 1)p/2 − 1
s− 1/π0 + (2ν∗ + 1)/2 , if s ≤ 2ν∗ + 1

2

(
p

π0
− 1
)
. (44)

We first verify (37). Consider first the case of regular-smooth convolutions. Using (18), simple algebra shows
that

μ
(
{Λn}

)
=
∑
j≤j1

2j−1∑
k=0

μ
{
(j, k)

}
=
∑
j≤j1

2jμ
{
(j, k)

}
= O(1)

∑
j≤j1

2j2j(p/2−1)τpj = O(1)
∑
j≤j1

2jp(1/2+ν∗)

= O
(
2j1p(1/2+ν∗)) = O

(
c−p
n

)
,
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where cn is given by (21), since it is easily seen in this case that τ2
j = O(22jν∗) with ν∗ given by (6) (compare

also with p. 306 of [3]). A similar bound can be shown for the box-car case with ν∗ replaced with ν̃∗ given
by (8).

We now verify (38) and (39). Since the random variables b̂κ−bκ follow a Gaussian distribution, the higher
moment bounds (38) follow from the variance inequality. Similarly, denoting Z to be a standard Gaussian
distributed random variable,

P
(
|̂bκ − bκ| > ζτjcn/2

)
= 2P

(
Z ≥ ζ

√
log n
2

)
≤ 4n−ζ2/8

ζ
√

log n
= O
(
c4n ∧ c2pn

)
,

as long as ζ > 2
√

(p ∨ 2)2ξ. This proves (39).

7.3. Temlyakov property

As seen in Appendix A in [14], the basis {τjψj,k(·)} satisfies the Temlyakov property as soon as

∑
j∈Λn

2jτ2
j ≤ C sup

j∈Λn

(
2jτ2

j

)
(45)

and ∑
j∈Λn

2jp/2τpj ≤ C sup
j∈Λn

(
2jp/2τpj

)
, 1 ≤ p < 2. (46)

Recall that τ2
j = O(22ν∗J) (regular-smooth convolutions) and τ2

j = O(j22ν̃∗j) (box-car convolutions) ν∗ and
ν̃∗ given by (6) and (8). Hence, (45) and (46) are verified by direct calculations.

7.4. Besov embedding and maxiset conditions

We recall that

Bs
π0,r ⊆ Bs′′

p,r, if π0 ≥ p, s ≥ s′′. (47)

Bs
π0,r ⊆ Bs′′

p,r, if π0 < p, s− 1/π0 = s′′ − 1/p. (48)

For both dense (43) and sparse (44) regions, we look for a Besov scale δ such that Bδ
π0,r ⊆ lq,∞. As usual,

we note that it is easier to work with

lq(μ) =
{
f(·) ∈ Lp(T ) : f =

∑
j,k

bj,kψj,k such that
∑

j,k∈Aj

|βjk|q
τ qj

‖τjψj,k‖pp < ∞
}
,

where Aj is a set of cardinality proportional to 2j . Using (22) and the fact that

‖τjψj,k‖pp = τpj 2j(p/2−1) = 2j((2ν∗+1)p/2−1),
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we see that f(·) ∈ lq(μ) if,

∑
j≥0

2j((2ν∗+1)p−2−2ν∗q)/2
2j−1∑
k=0

|bj,k|q =
∑
j≥0

2jq[
(2ν∗+1)(p−q)

2q + 1
2− 1

q ]
2j−1∑
k=0

|bj,k|q < +∞.

From (9), the latter condition holds when

f(·) ∈ Bδ
q,q(T ) for δ = (2ν∗ + 1)

2

(
p

q
− 1
)
. (49)

Now, depending on whether we are in the dense (43) or sparse (44) regions, we look for s and π such that

Bs
π0,r ⊆ Bδ

q,q. (50)

This embedding can be found by exploiting the known monotonicity of Besov balls, namely for 0 < r ≤ q,
Bs
π0,r ⊆ Bs

π0,q, along with (47) or (48).
The dense region. By definition (43) of q = qd, we have s ≥ (ν∗+1/2)(p/π0−1). Eliminate p by substituting
p = qd(2s+2ν∗+1)/(2ν∗+1) yields π0 ≥ qd. Hence, (50) follows from (47) as long as s ≥ δ = (2ν∗+1)

2 (pq −1),
which is always true in this dense region since δ = s > 0 when q = qd.
The sparse region. Take q = qs and δ = (2ν∗+1)

2 ( p
qs

− 1) = (2ν∗ + 1) sp−p/π0+1
(2ν∗+1)p−2 . We consider two cases. If

π0 > qs, we use the embedding (47). We have to check that s > δ = (2ν∗ + 1) sp−p/π0+1
(2ν∗+1)p−2 which is equivalent

to s < (2ν∗+1)
2 ( p

π0
− 1), which is true in the sparse region. Note that we require δ > 0 which implies either

(i) p > 2/(2ν∗ + 1) and s > 1/π0 − 1/p or (ii) p < 2/(2ν∗ + 1) and s < 1/π0 − 1/p. The (ii) scenario is
impossible since p < 2/(2ν∗ + 1) and s < 1/π0 − 1/p is a contradiction of s ≥ 1/π0 − ν∗ − 1/2. On the
other hand, by definition, when in the sparse phase, 1/π0 − ν∗ − 1/2 < (ν∗ + 1/2)(p/π0 − 1) which implies
p > 2/(2ν∗+1) and consequently verifies that s > 1/π0−1/p since s > 1/π0−ν∗−1/2. Thus we established
(50) for qs < π0 < qd. By definition (44) of q = qs, if π0 ≤ qs, the corresponding δ fulfils s−1/π0 = s′−1/q.
In this case, (48) and (49) ensure that

Bs
π0,r ⊆ Bs′

q,q ≡ lq(μ),

as had to be proved.
To apply Theorem 3, (42) needs to be verified. Therefore we need to find a δ > 0 such that for any

f ∈ Bδ
p,r, (42) is satisfied.

cq−p
n

∥∥∥∥f −
∑
j,k

bj,kΨj,k

∥∥∥∥p
p

= cq−p
n 2−j1δp‖f‖Bδ

p,r
= cq−p+2δp/(2ν∗+1)

n ‖f‖Bδ
p,r

.

The above is bounded uniformly in n if we choose δ = 1/2(2ν∗ +1)(1− q/p). Now we need to find s, π0 such
that Bs

π0,r ⊆ Bδ
p,r.

Consider the first case π0 ≥ p. This case cannot occur in the sparse phase due to (26) and (29) with the
assumption that s is positive. In the dense phase, use embedding (47) with γ = δ and q = qd. Therefore,
(47) holds if s ≥ 1/2(2ν + α)(1 − qd/p). This implies,

s ≥ 1/2(2ν∗ + 1)(1 − qd/p)

= (2ν∗ + 1)s
2s + 2ν∗ + 1 ,

which always holds under the assumption that s > 0.
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Now consider the dense case when π0 < p. In this scenario use embedding (48) by defining s − 1/π0 =
s′′ − 1/p which ensures Bs

π0,r ⊆ Bs′′
p,r. Then complete the embedding using (47) (namely, Bs′′

p,r ⊆ Bδ
p,r) which

requires s′′ ≥ δ with q = qd or equivalently after rearrangement, 2ss′′ + (2ν∗ + 1)(1/p− 1/π0) ≥ 0. The left
hand side is greater than (s − 1/π0)(p/π0 − 1)(2ν∗ + 1) ≥ 0 when s ≥ (ν∗ + 1/2)(p/π0 − 1) (which is true
in the dense phase).

The last case to consider is the sparse case when π0 < p. Again introduce a new Besov scale s′′ defined
with, s − 1/π = s′′ − 1/p and apply a similar argument to above which requires that, s′′ ≥ δ with q = qs.
This is satisfied if s > 1/π0, which always holds.

7.5. Proofs of Theorem 1 and Theorem 2

The proofs of Theorems 1 and 2 are a direct application of Theorem 3 with j1, ζ, τj , and cn of Section 2.
Combining results of Sections 7.3 and 7.4, we see that all conditions of Theorem 3 are satisfied. Using
the embedding results of Section 7.4, we derive the rate exponent γ = γS or γ = γB given by (25) and
(28) respectively for smooth and boxcar convolutions for any f(·) ∈ Bs

π0,r using (43) for q when s ≥
(2ν∗+1)

2 (p/π0 − 1) and the rate exponent γ = γS and γ = γB given by (26) and (29) respectively for smooth
and boxcar convolutions for any f(·) ∈ Bs

π0,r using (44) for q when 1/π0 ≤ s < (2ν∗+1)
2 (p/π0 − 1), with ν∗

given either by (6) (regular-smooth convolutions) or (8) (box-car convolutions).
For the super-smooth scenario in Theorem 1 we appeal to the same arguments used in the proof of [32,

Theorem 4.2]. Consider the moment bound directly with the estimator (16),

E‖f̂n − f‖pp ≤ 2p−1E

∥∥∥∥∥
2j0−1∑
k=0

(âj0,k − aj0,k)Φj0,k(t)

∥∥∥∥∥
p

p

+ 2p−1

∥∥∥∥∥
∞∑

j=j0

2j−1∑
k=0

bj,kΨj,k(t)

∥∥∥∥∥
p

p

(51)

The two terms in (51) can be bounded separately with (36) and the scale level (17),

E

∥∥∥∥∥
2j0−1∑
k=0

(âj0,k − aj0,k)Φj0,k(t)

∥∥∥∥∥
p

p

≤ C2j0(p/2−1)
2j0−1∑
k=0

E|âj0,k − aj0,k|p

≤ Cn−α�∗p/22j0p/2(α�∗+2ν�∗ )ea�∗p2
j0β�∗

≤ Cn−εp/2(logn)p/2(α�∗+2ν�∗ )

= o
(
(logn)−s∗p/β�∗

)
. (52)

For the next term use the property of Besov spaces,

∥∥∥∥∥
∞∑

j=j0

2j−1∑
k=0

bj,kΨj,k(t)

∥∥∥∥∥
p

p

≤
( ∞∑

j=j0

C2−j(s+1/p−1/ min(π0,p))

)p

= O
(
(logn)−s∗p/β�∗

)
. (53)

The result of (27) follows combining the results (51), (52) and (53).
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Appendix A. Meyer wavelet proofs

Lemma 1. Let ω ∈ Z and j ∈ Z+, then the following identity holds for the sum of the dyadic rationals on
the complex unit circle.

2j−1∑
k=0

e2πiωk2−j

= 2j1{ ω
2j

∈Z}

Proof. The proof relies on the trigonometric components (real and imaginary parts) of the complex expo-
nential. Namely,

e2πiωk2−j

= cos
(
2πωk2−j

)
+ i sin

(
2πωk2−j

)
.

The case when ω = 0 follows immediately due to the identities that cos(0) = 1 and sin(0) = 0. Consider
now the case when ω �= 0. Starting with the real part, partition the summation into halves with,

2j−1∑
k=0

cos
(
2πωk2−j

)
=

2j−1−1∑
k=0

cos
(
2πωk2−j

)
+

2j−1∑
k=2j−1

cos
(
2πωk2−j

)

=
2j−1−1∑
k=0

cos
(
2πωk2−j

)
+

2j−2j−1−1∑
k=0

cos
(
2πωk2−j + πω

)

=
(
1 + (−1)ω

) 2j−1−1∑
k=0

cos
(
2πωk2−j

)
.

If ω is odd, ω = 2s + 1 for some s ∈ Z then the above result is zero. Therefore consider ω = 2s for some
s ∈ Z (ω is even).

2j−1∑
k=0

cos
(
2πωk2−j

)
=
(
1 + (−1)ω

) 2j−1−1∑
k=0

cos
(
2πωk2−j

)

= 2
2j−1−1∑
k=0

cos
(
2πωk2−j

)

= 2
{2j−2−1∑

k=0

cos
(
2πωk2−j

)
+

2j−1−1∑
k=2j−2

cos
(
2πωk2−j

)}

= 2
{2j−2−1∑

k=0

cos
(
2πωk2−j

)
+

2j−2−1∑
k=0

cos
(

2πωk2−j + πω

2

)}

= 2
{2j−2−1∑

cos
(
2πωk2−j

)
+

2j−2−1∑
cos
(
2πωk2−j + πs

)}

k=0 k=0
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= 2
(
1 + (−1)s

) 2j−2−1∑
k=0

cos
(
2πωk2−j

)
.

If s is odd then the above result is zero. This process can be repeated until we reach the last possible result
where ω = C2j for some C ∈ Z and,

2j−1∑
k=0

cos
(
2πωk2−j

)
= 2j1{k=0} cos

(
2πωk2−j

)
= 2j .

A similar proof applies for the imaginary part except the final step has,

2j−1∑
k=0

sin
(
2πωk2−j

)
= 2j1{k=0} sin

(
2πωk2−j

)
= 0. �

Lemma 2. Let (φ, ψ) be the Meyer wavelet basis. That is, the mother Meyer wavelet defined in the Fourier
domain with,

ψm =
∫
R

e−2πimxψ(x) dx = eiπm

⎧⎨⎩
sin(π2 ν(3|m| − 1)) for 1

3 ≤ |m| ≤ 2
3 ;

cos(π2 ν(3
2 |m| − 1)) for 2

3 ≤ |m| ≤ 4
3 ;

0 otherwise,
(A.1)

where ν(x) is a polynomial that controls the vanishing moment properties of the wavelet basis. In particular,
the Meyer wavelet has the defining property that the polynomial satisfies,

ν(x) + ν(1 − x) = 1. (A.2)

Then the matrix M = (Mm,m′)m,m′∈Cj
defined with entries

Mm,m′ =
∑
j′∈Z

1{m−m′
2j

∈Z}ψm2−j′ψm′2−j′

is the identity matrix.

Proof. Using the definition of (A.1) and considering a ∈ Z such that (m−m′)2−j = a we can write,

1{m−m′
2j

∈Z}ψm2−jψm′2−j = eiaπf
(
|m2−j |

)
f
(
|m′2−j |

)
where f is defined by the piece wise trigonometric functions given in (A.1). Recall the support of the Meyer
wavelet at scale j in the Fourier domain is Cj defined in (14). Define a partition of the domain at level j
with the domain at the surrounding scales, j − 1 and j + 1 with,

Cj ∩ Cj−1 =
{
a ∈ Z : 1

3 ≤ |a2−j | ≤ 2
3

}
=: Csin

j−1

Cj ∩ Cj+1 =
{
a ∈ Z : 2

3 ≤ |a2−j | ≤ 4
3

}
=: Ccos

j+1.

The sets are named Csin
j−1 and Ccos

j+1 respectively since they refer to those trigonometric parts of the Meyer
wavelet at scale j respectively (see (A.1)) and it is the domain where the coefficients are in both Cj ∩Cj−1
and Cj ∩ Cj+1 respectively. To ease the tedious nature of the forthcoming argument, consider a particular
ordering of the two sets Ccos

j+1 and Csin
j−1.
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Csin
j−1 =

{
−
⌊

2j+1

3

⌋
,−
⌊

2j+1

3

⌋
+ 1, . . . ,−

⌈
2j

3

⌉
,

⌈
2j

3

⌉
,

⌈
2j

3

⌉
+ 1, . . . ,

⌊
2j+1

3

⌋}
.

Ccos
j+1 =

{
−
⌊

2j+2

3

⌋
,−
⌊

2j+2

3

⌋
+ 1, . . . ,−

⌈
2j+1

3

⌉
,

⌈
2j+1

3

⌉
,

⌈
2j+1

3

⌉
+ 1, . . . ,

⌊
2j+2

3

⌋}
.

Further partition these sets into the positive and negative parts with Csin +
j−1 := Csin

j−1 ∩ Z+, Csin −
j−1 :=

Csin
j−1 ∩ Z−, Ccos +

j+1 := Ccos
j−1 ∩ Z+ and Ccos −

j+1 := Ccos
j−1 ∩ Z− where Z+ and Z− are the positive and negative

integers respectively.
Write the matrix M in the following way,

M =

Ccos −
j+1 Csin −

j−1 Csin +
j−1 Ccos +

j+1⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

Ccos −
j+1 E1 0 0 E2

Csin −
j−1 0 R1 R2 0

Csin +
j−1 0 R3 R4 0

Ccos +
j+1 E3 0 0 E4

where the outer sets denote the values of m,m′ inside the M matrix. With a slight abuse of notation we
will refer to the elements of M using m,m′ ∈ Cj . For example, the first element M1,1 (the top left matrix
entry of E1) has m = m′ = −�2j+1

3 �, the first element of Ccos −
j+1 .

The matrix M is composed of block matrix components where 0 denotes a matrix of zeros of appropriate
size implied by the cardinalities of Ccos −

j+1 , Csin −
j−1 , Csin +

j−1 and Ccos +
j+1 . The zero matrices follow since a value

m ∈ Cj cannot be in both Cj−1 and Cj+1 since Cj−1 ∩Cj+1 = ∅. The overall result follows by showing that
the other block matrices simplify to the following: E1 = R1 = R4 = E4 = I and E2 = R2 = R3 = E3 = 0
where I is the identity matrix of appropriate size. To show these results for each case, one needs to first
consider the values of m,m′ ∈ Cj such that m − m′ is a factor of 2k for k ∈ {j, j − 1, j + 1} and then
compute the sum

∑j+1
k=j−1 ψm2−kψm2−k for these values.

Before proceeding, some notation is defined. For x ∈ R, let {x} denote the fractional part of x. Then we
have,

�x� = x− {x} and �x� = x + 1 − {x}.

Case R1 and R4
We will consider here only the case for R4, the case for R1 follows by symmetry. In this context,

m,m′ ∈ Csin +
j−1 where it is possible that m = m′ is a solution to m −m′ = s2j with s = 0. This is in fact

the only solution since the cardinality of Csin +
j−1 < 2j−1. Indeed,

∣∣Csin +
j−1
∣∣ = ⌊2j+1

3

⌋
−
⌈

2j

3

⌉
+ 1

= 2j+1

3 −
{

2j+1

3

}
− 2j

3 − 1 +
{

2j

3

}
+ 1

= 2j − (−1)j

3 < 2j−1.

Therefore the only value of s ∈ Z such that m − m′ = s2j or m − m′ = s2j−1 is s = 0 (m = m′).
This scenario occurs along the diagonal of R4, therefore the off-diagonal elements are zero. Computing the
diagonal elements, we have m,m′ ∈ Csin +

j−1 =⇒ 2m, 2m′ ∈ Ccos +
j+1 and m

2 ,
m′

2 /∈ Cj . Therefore only the scales
j − 1 and j are used in the summation. Consider these diagonal elements of R4 with,
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R4 = 1{m,m′∈Csin +
j−1 :m=m′}{ψm2−jψm′2−j + ψm2−j+1ψm′2−j+1}

= 1{m,m′∈Csin +
j−1 :m=m′}ψm2−jψm′2−j

+ 1{2m,2m′∈Ccos +
j+1 :m=m′}ψ2m2−jψ2m′2−j

= 1{m=m′}

(
sin2
(
π

2 ν
(
3
∣∣m2−j

∣∣− 1
))

+ cos2
(
π

2 ν
(

3
2
∣∣m2−j+1∣∣− 1

)))
= 1

since sin2 θ + cos2 θ = 1 for all θ ∈ R.
Case R2 and R3

Similarly, we will consider here only the case for R3, the case for R2 follows by symmetry. In this context,
m ∈ Csin +

j−1 and m′ ∈ Csin −
j−1 . Consider the values m−m′ along the main diagonal of R3 which are identical

since the values m ∈ Csin +
j−1 and m′ ∈ Csin −

j−1 are consecutive. The first diagonal element is when m = �2j+1

3 �
and m′ = −�2j

3 � yielding,

m−m′ =
⌊

2j+1

3

⌋
+
⌈

2j

3

⌉
= 2j+1

3 −
{

2j+1

3

}
+ 2j

3 + 1 −
{

2j

3

}
= 2j −

{
2j+1

3

}
+ 1 −

{
2j

3

}
= 2j −

{
2j − 2j

3

}
−
{

2j

3

}
+ 1

= 2j − 1 + 1 = 2j .

Similarly the maximum and minimum distances are, maxm∈Csin +
j−1 ,m′∈Csin −

j−1
(m − m′) = 2�2j+1

3 � and

minm∈Csin +
j−1 ,m′∈Csin −

j−1
(m−m′) = 2�2j

3 �. Therefore the range of possible distances between m and m′ are of

length 2(�2j+1

3 �−� 2j

3 �) = 2j+1−2(−1)j
3 −2 < 2j . Therefore m−m′ = s2j for some s ∈ Z only on the diagonal

and s = 1 in this case (m = m′ + 2j). Thus again, R3 is a diagonal matrix. Computing these values we
have, m ∈ Csin +

j−1 =⇒ 2m ∈ Ccos +
j+1 and m

2 /∈ Cj . Similar cases apply to m′. Therefore only the scales j − 1
and j are used in the summation. Consider these diagonal elements of R3,

R3 = 1{m∈Csin +
j−1 ,m′∈Csin −

j−1 :m=m′+2j}{ψm2−jψm′2−j + ψm2−j+1ψm′2−j+1}

= 1{m=m′+2j}ψm2−jψm′2−j1{m∈Csin +
j−1 ,m′∈Csin −

j−1 }

+ 1{m=m′+2j}ψ2m2−jψ2m′2−j1{2m∈Ccos +
j+1 ,2m′∈Ccos −

j+1 }

= 1{m=m′+2j}e
iπ(m−m′)2−j

sin
(
π

2 ν
(
3
∣∣m2−j

∣∣− 1
))

sin
(
π

2 ν
(
3
∣∣m′2−j

∣∣− 1
))

+ 1{m=m′+2j}e
iπ(m−m′)2−j−1

cos
(
π

2 ν
(

3
2
∣∣m2−j+1∣∣− 1

))
cos
(
π

2 ν
(

3
2
∣∣m′2−j+1∣∣− 1

))
= −1{m=m′+2j} sin

(
π

2 ν
(
3
∣∣m2−j

∣∣− 1
))

sin
(
π

2 ν
(
3
∣∣m′2−j

∣∣− 1
))

+ 1{m=m′+2j} cos
(
π
ν
(
3
∣∣m2−j

∣∣− 1
))

cos
(
π
ν
(
3
∣∣m′2−j

∣∣− 1
))
2 2
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= 1{m=m′+2j} cos
(
π

2 ν
(
3
∣∣m2−j

∣∣− 1
)

+ π

2 ν
(
3
∣∣m′2−j

∣∣− 1
))

.

Exploit now the fact that 1{m∈Csin +
j−1 ,m′∈Csin −

j−1 } implying m > 0 and m′ < 0 along with the defining property
of the Meyer wavelet in (A.2) with the specific choice x = 3m2−j − 1,

R3 = 1{m=m′+2j} cos
(
π

2 ν
(
3
∣∣m2−j

∣∣− 1
)

+ π

2 ν
(
3
∣∣m′2−j

∣∣− 1
))

= 1{−m′2−j=1−m2−j} cos
(
π

2 ν
(
3m2−j − 1

)
+ π

2 ν
(
−3m′2−j − 1

))
= cos

(
π

2 ν
(
3m2−j − 1

)
+ π

2 ν
(
3 − 3m2−j − 1

))
= cos

(
π

2

)
= 0.

Therefore R3 = 0.
Case E1 and E4

Similarly, we will consider here only the case for E4, the case for E1 follows by symmetry. In this context,
m,m′ ∈ Ccos +

j+1 and we apply a similar argument used in the cases for R1 and R4. Again, m = m′ is the
only solution to m−m′ = s2j with s = 0 ∈ Z. Indeed,

∣∣Ccos +
j+1
∣∣ = ⌊2j+2

3

⌋
−
⌈

2j+1

3

⌉
+ 1

= 2j+2

3 −
{

2j+2

3

}
− 2j+1

3 − 1 +
{

2j+1

3

}
+ 1

= 2j+1 − (−1)j+1

3 < 2j .

Therefore the only value of s ∈ Z such that m − m′ = s2j or m − m′ = s2j+1 is s = 0 (m = m′). This
scenario occurs along the diagonal of E4 which is therefore zero on the off-diagonal. Computing these values
we have, m,m′ ∈ Ccos +

j+1 =⇒ m
2 ,

m′

2 ∈ Csin +
j+1 and 2m, 2m′ /∈ Cj . Therefore only the scales j and j + 1 are

used in the summation. Consider these diagonal elements of E4 with,

E4 = 1{m,m′∈Ccos +
j+1 :m=m′}{ψm2−jψm′2−j + ψm2−(j+1)ψm′2−(j+1)}

= 1{m=m′}e
iπ(m−m′)2−j

cos
(
π

2 ν
(

3
2
∣∣m2−j

∣∣− 1
))

cos
(
π

2 ν
(

3
2
∣∣m′2−j

∣∣− 1
))

+ 1{m=m′}e
iπ(m−m′)2−(j+1)

sin
(
π

2 ν
(
3
∣∣m2−(j+1)∣∣− 1

))
sin
(
π

2 ν
(
3
∣∣m′2−(j+1)∣∣− 1

))
= 1

since sin2 θ + cos2 θ = 1 for all θ ∈ R.
Case E2 and E3

Lastly, consider the case for E3, the case for E2 follows by symmetry. In this context, m ∈ Ccos +
j+1 and

m′ ∈ Ccos −
j+1 . Consider the differences m −m′ along the main diagonal of E3 which are identical since the

values of m ∈ Ccos +
j+1 and m′ ∈ Ccos −

j+1 are consecutive. The first diagonal element is when m = �2j+1

3 � and
m′ = −�2j+2 � yielding,
3
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m−m′ =
⌈

2j+1

3

⌉
+
⌊

2j+2

3

⌋
= 2j+1

3 + 1 −
{

2j+1

3

}
+ 2j+2

3 −
{

2j+2

3

}
= 2j+1 −

{
2j+1

3

}
−
{

2j+2

3

}
+ 1

= 2j+1 −
{

2j+1

3

}
−
{

2j+1 − 2j+1

3

}
+ 1

= 2j+1 − 1 + 1 = 2j+1.

Similarly the maximum and minimum distances are, maxm∈Ccos +
j+1 ,m′∈Ccos −

j+1
(m − m′) = 2�2j+2

3 � and

minm∈Ccos +
j+1 ,m′∈Ccos −

j+1
(m − m′) = 2�2j+1

3 �. Therefore the range of possible distances between m and m′

are of length 2(�2j+2

3 � − � 2j+1

3 �) = 2j+2−2(−1)j+1

3 − 2 < 2j+1. Therefore m −m′ = s2j for some s ∈ Z only
on the diagonal and s = 2 in this case (m = m′ + 2j+1). Thus again, E3 is a diagonal matrix. Computing
these values we have, m ∈ Ccos +

j+1 =⇒ m
2 ∈ Csin +

j+1 and 2m /∈ Cj . Similar cases apply to m′. Therefore only
the scales j and j + 1 are used in the summation. Consider these diagonal elements of E3,

E3 = 1{m∈Ccos +
j+1 ,m′∈Ccos −

j+1 :m=m′+2j+1}(ψm2−jψm′2−j + ψm2−(j+1)ψm′2−(j+1))

= 1{m=m′+2j+1}e
iπ(m−m′)2−j

cos
(
π

2 ν
(

3
2
∣∣m2−j

∣∣− 1
))

cos
(
π

2 ν
(

3
2
∣∣m′2−j

∣∣− 1
))

+ 1{m=m′+2j+1}e
iπ(m−m′)2−j−1

sin
(
π

2 ν
(

3
∣∣∣∣m2 2−j

∣∣∣∣− 1
))

sin
(
π

2 ν
(

3
∣∣∣∣m′

2 2−j

∣∣∣∣− 1
))

= −1{m=m′+2j+1} sin
(
π

2 ν
(

3
2
∣∣m2−j

∣∣− 1
))

sin
(
π

2 ν
(

3
2
∣∣m′2−j

∣∣− 1
))

+ 1{m=m′+2j+1} cos
(
π

2 ν
(

3
2
∣∣m2−j

∣∣− 1
))

cos
(
π

2 ν
(

3
2
∣∣m′2−j

∣∣− 1
))

= 1{m=m′+2j+1} cos
(
π

2 ν
(

3
2
∣∣m2−j

∣∣− 1
)

+ π

2 ν
(

3
2
∣∣m′2−j

∣∣− 1
))

.

Again, exploit the fact that 1{m∈Ccos +
j+1 ,m′∈Ccos −

j+1 } implying m > 0 and m′ < 0 along with the Meyer
polynomial property in (A.2) with the specific choice x = 3

2m2−j − 1,

E3 = 1{m=m′+2j+1} cos
(
π

2 ν
(

3
2
∣∣m2−j

∣∣− 1
)

+ π

2 ν
(

3
2
∣∣m′2−j

∣∣− 1
))

= 1{−m′2−j=2−m2−j} cos
(
π

2 ν
(

3
2m2−j − 1

)
+ π

2 ν
(
−3

2m
′2−j − 1

))
= cos

(
π

2 ν
(

3
2m2−j − 1

)
+ π

2 ν
(

3 − 3
2m2−j − 1

))
= cos

(
π

2

)
= 0.

Therefore E3 = 0 which completes the proof. �
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