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1 Proofs of Lemma 5.2 and Theorem 2.2

Proof of Lemma 5.2. Consider (i). Note first that, using Lemma 2.1 of Hörmann and Kokoszka

(2010), the sequence {〈Yi, y〉, i = 1, 2, . . .} is L2-m-approximable, since
∑

m≥1
(
E|〈Yi − Yi,m, y〉|2

)1/2 ≤
‖y‖

∑
m≥1

(
E‖Yi − Yi,m‖2

)1/2
< ∞. Therefore, by Lemma 4.1 of Hörmann and Kokoszka (2010), we

get that
∞∑

i=−∞
|E〈Y0, y〉〈Yi, y〉| <∞. (1.1)

Also, note that if wb(i) is of the form (3) of the main paper, then

Wh

bw ∗ w(h/b)
→ 1,

where Wh =
∑b−h

i=1 w1(i)wb(i+ h), h = 0, 1, . . . , b− 1, and w ∗ w denotes is the self-convolution of w.

Therefore, since ‖wb‖22 =W0, we get, for any fixed h, as n→∞,

Wh

‖wb‖22
=

Wh

bw ∗ w(h/b)

bw ∗ w(0)

W0

bw ∗ w(h/b)

bw ∗ w(0)
→ 1. (1.2)

Furthermore, by Cauchy-Schwarz’s inequality, it is easily seen that
∑b−h

i=1 wb(i)wb(i+h) ≤
∑b

i=1w
2
b (i),

i.e.,

Wh ≤ ‖wb‖22 for h = 1, 2, . . . , b− 1. (1.3)
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To complete the proof of (i), it suffices to prove that
∑b−1

h=1(Wh/‖wb‖22)E〈Y0, y〉〈Yh, y〉 →∑∞
h=1 E〈Y0, y〉〈Yh, y〉. For this, and for b large enough, we use the bound∣∣∣∣∣

b−1∑
h=1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

∞∑
i=1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣
≤

∣∣∣∣∣
m∑

h=1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

m∑
i=1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣
+

∣∣∣∣∣
b−1∑

h=m+1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

b−1∑
i=m+1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
i=b

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣ . (1.4)

Because of (1.2) and (1.1), the first and the last term are o(1). Concerning the second term, we show

that there exists m0 ∈ N such that

lim sup
n→∞

∣∣∣∣∣
b−1∑

h=m+1

Wh

‖wb‖22
E〈Y0, y〉〈Yh, y〉 −

b−1∑
i=m+1

E〈Y0, y〉〈Yi, y〉

∣∣∣∣∣ = 0

for m = m0. By using Assumption (1) of the main paper, expression (1.3), the facts that Wh ≥ 0 and

that 〈Y0, y〉 and 〈Yi,i, y〉 are independent for i ≥ m + 1, we get that, for every ε > 0, ∃m1 ∈ N such

that, for every m ≥ m1,∣∣∣∣∣
b−1∑

h=m+1

(
Wh

‖wb‖22
− 1

)
E(〈Y0, y〉〈Yh, y〉)

∣∣∣∣∣ ≤
∞∑

i=m+1

|E〈Y0, y〉〈Yi, y〉|

=
∞∑

i=m+1

|E〈Y0, y〉〈Yi − Yi,i, y〉|

≤ ‖y‖2
(
E‖Y0‖2

)1/2 ∞∑
i=m+1

(
E‖Yi − Yi,i‖2

)1/2
< ε, (1.5)

because of expression (3) of the main paper.

Consider next assertion (ii). Notice first that,

∫∫ {
1

n

n∑
t=1

Yt(u)Yt(v)− E[Y0(u)Y0(v)]

}2

= oP (1).

Hence, and since the summands of Yi(u)Yi+h(v) and Yi+h(v)Yi(u) can be handled similarly, it suffices

to show that

∫∫ 
b−1∑
h=1

Wh

‖wb‖22
1

n

n−h∑
t=1

Yt(u)Yt+h(v)−
∑
t≥1

E[Y0(u)Yt(v)]


2

= oP (1). (1.6)
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By expressions (1.2) and (1.3), the proof of (1.6) is analogous to the proof of (A.2) of Horváth et

al. (2013). This completes the proof of the lemma.

Proof of Theorem 2.2. Let S∗n =
√
n(X

∗
n−E∗(X∗n)) and, as in Theorem 2.1 of the main paper,

we have that S∗n = k−1/2
∑k

i=1 [U∗i − E∗(U∗i )], where U∗i = b−1/2(X∗(i−1)b+1+X∗(i−1)b+2+. . .+X∗ib), i =

1, 2, . . . , k, are i.i.d. random variables, 〈S∗n, y〉 = k−1/2
∑k

i=1 [W ∗i − E∗(W ∗i )] with W ∗i = 〈U∗i , y〉, i =

1, 2, . . . , k, and µ∗ = E∗(W ∗1 ). Let C be the covariance operator with kernel

c(u, v) = E[Y0(u)Y0(v)] +
∑
h≥1

E[Y0(u)Yh(v)] +
∑
h≥1

E[Y0(v)Yh(u)], u, v ∈ [0, 1]2,

N = n−b+1, ‖wb‖1 =
∑b

i=1wb(t) and ‖wb‖22 =
∑b

t=1w
2
b (t). Finally, let Xi = Yi−Y n, i = 1, 2, . . . , n,

and

Ui =
1

‖wb‖2
(wb(1)Xi + wb(2)Xi+1, . . .+ wb(b)Xi+b−1) , i = 1, 2, . . . , N.

It suffices to prove that

(L1) 〈S∗n, y〉
d→ N(0, σ2(y)) for every y ∈ L2, where σ2(y) = 〈C(y), y〉, and that

(L2) the sequence {S∗n, n ∈ N} is tight.

To prove (L1), we establish that, as n→∞,

Var∗ (〈S∗n, y〉)
P→ σ2(y) (1.7)

and that
〈S∗n, y〉√

Var∗(〈S∗n, y〉)
d→ N(0, 1). (1.8)

To see (1.7), note first that Var∗ (〈S∗n, y〉) = k−1
∑k

i=1 Var∗(W ∗i − E∗(W ∗i )) = Var∗(W ∗1 ) and that

Var∗(W ∗1 ) =
1

N

N∑
i=1

〈Ui, y〉 −
1

N

N∑
j=1

〈Uj , y〉

2

=
1

N

N∑
i=1

[
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉

]2
−

 1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yj+s−1, y〉

2

. (1.9)

We next show that

1

N

N∑
i=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉 = Op(
b√
n

). (1.10)

Toward this, note that

1

N

N∑
i=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉
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=
1

N

‖wb‖1
‖wb‖2

 n∑
i=1

〈Yi, y〉 −
b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yj , y〉 −

b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−j+1, y〉

 ,
(1.11)

and that

E

 1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉

 = 0. (1.12)

Furthermore, using the decomposition n∑
i=1

〈Yi, y〉 −
b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yj , y〉 −

b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−j+1, y〉

2

=

n∑
i=1

n∑
j=1

〈Yi, y〉〈Yj , y〉+

b−1∑
i=1

b−1∑
j=1

(
1−

∑i
t=1wb(t)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, y〉〈Yj , y〉

+

b−1∑
i=1

b−1∑
j=1

(
1−

∑b
s=b−i+1wb(s)

‖wb‖1

)(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−i+1, y〉〈Yn−j+1, y〉

− 2

b−1∑
i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
〈Yn−i+1, y〉〈Yj , y〉

− 2
n∑

i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, y〉〈Yj , y〉

− 2
n∑

i=1

b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yi, y〉〈Yn−j+1, y〉, (1.13)

we get, by equation (1.11), the fact that ‖wb‖2 = O(b1/2), ‖wb‖1 = O(b) and the same arguments as

those used to obtain equation (24) of the main paper, that

E

 1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yi+s−1, y〉

2

=
‖wb‖21

N2‖wb‖22

n∑
i=1

n∑
j=1

E[〈Yi, y〉〈Yj , y〉] +O(b2/n)

= O(b/n) +O(b2/n) = O(b2/n). (1.14)

From (1.12) and (1.14), assertion (1.10) follows. Consider next the first term of the right hand side

of equation (1.9). For this, we have

1

N

N∑
i=1

[
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉

]2

=
1

N

1

‖wb‖22

{
n∑

i=1

‖wb‖22〈Yi, y〉〈Yi, y〉+
b−1∑
h=1

Wh

n−h∑
i=1

[〈Yi, y〉〈Yi+h, y〉+ 〈Yi+h, y〉〈Yi, y〉]

−
b−1∑
s=1

(
‖wb‖22 −

s∑
t=1

w2
b (t)

)
〈Ys, y〉〈Ys, y〉 −

b−1∑
s=1

(
‖wb‖22 −

b∑
t=b−s+1

w2
b (t)

)
〈Yn−s+1, y〉〈Yn−s+1, y〉
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−
b−1∑
h=1

b−h∑
i=1

(
Wh −

i∑
t=1

wb(t)wb(t+ h)

)
[〈Yi, y〉〈Yi+h, y〉+ 〈Yi+h, y〉〈Yi, y〉]

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

b−h∑
t=b−i−h+1

wb(t)wb(t+ h)

)
[〈Yn−i+1, y〉〈Yn−i+1−h, y〉

+ 〈Yn−i+1−h, y〉〈Yn−i+1, y〉]

}
,

from which it follows that

1

N

N∑
i=1

[
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉

]2

=
1

N

n∑
i=1

〈Yi, y〉〈Yi, y〉+

b−1∑
h=1

Wh

‖wb‖22
1

N

n−h∑
i=1

[〈Yi, y〉〈Yi+h, y〉+ 〈Yi+h, y〉〈Yi, y〉]

+Op(b/n) +Op(b
2/n).

Hence, using expressions (1.9) and (1.10), we get,

Var∗(W ∗1 ) =

∫∫
c̃N (u, v)y(u)y(v)dudv +Op(b

2/n), (1.15)

where

c̃N (u, v) =
1

N

n∑
i=1

Yi(u)Yi(v) +

b−1∑
h=1

Wh

‖wb‖22
1

N

n−h∑
i=1

[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)]. (1.16)

Using Lemma 5.2 (ii) of the main paper and Cauchy-Schwarz’s inequality, we conclude that, as n→∞,∣∣∣∣∫∫ (c̃n(u, v)− c(u, v))y(u)y(v)dudv

∣∣∣∣ ≤ (∫∫ {c̃n(u, v)− c(u, v)}2dudv

)1/2

‖y‖2 = oP (1). (1.17)

where c̃n(u, v) = (N/n)c̃N (u, v). Thus,∫∫
c̃n(u, v)y(u)y(v)dudv

P→
∫∫

c(u, v)y(u)y(v)dudv

and, using equation (1.15),

Var∗〈S∗n, y〉 =
n

N

∫∫
cn(u, v)y(u)y(v)dudv +Op(b

2/n)

P→
∫∫

c(u, v)y(u)y(v)dudv = σ2(y), (1.18)

as n→∞. To prove (1.8), as stated in the proof of Theorem 2.1 of the main paper, we must establish

Lindeberg’s condition.

For this, let Wi = 〈Ui, y〉, i = 1, 2, . . . , n, and note that, by (1.9), we have

Wi − µ∗ = 〈Ui, y〉 −
1

N

N∑
j=1

〈Uj , y〉
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=
1

‖wb‖2

b∑
t=1

wb(t)〈Xi+t−1, y〉 −
1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Xj+s−1, y〉

=
1

‖wb‖2

b∑
t=1

wb(t)〈Yi+t−1, y〉 −
1

N

N∑
j=1

1

‖wb‖2

b∑
s=1

wb(s)〈Yj+s−1, y〉

= W Y
i −

1

N

N∑
j=1

W Y
j = W Y

i − µ∗Y , (1.19)

with an obvious notation forW Y
i and µ∗Y . Hence, using (33) of the main paper and Markov’s inequality,

we have, for any δ > 0 and for any ε > 0, that

P

(
1

k

k∑
t=1

E∗
[
(W ∗t − µ∗)21(|W ∗t − µ∗| > ετ∗k )

]
> δ

)
≤ δ−1E

{
E∗
[
(W ∗1 − µ∗)21(|W ∗1 − µ∗| > ετ∗k )

]}
= δ−1E

[
(W Y

1 − µ∗Y )21(|W Y
1 − µ∗Y | > ετ∗k )

]
≤ 4δ−1

[
E(W Y

1 )21(|W Y
1 | > ετ∗k/2) + E(µ∗Y )21(|µ∗Y | > ετ∗k/2)

]
≤ 4δ−1

[
E(W Y

1 )21(|W Y
1 | > ετ∗k/2) + E(µ∗Y )2

]
. (1.20)

Since E(W Y
1 )2 =

∑
|h|<b

( W|h|
‖wb‖22

)
E[〈Y0, y〉〈Yh, y〉], we get, by Lemma 5.2 (i) of the main paper that,

E(W Y
1 )2

P→
∫∫

c(u, v)y(u)y(v)dudv,

and, by the dominated convergence theorem, that limn→∞ E(W Y
1 )21(|W Y

1 | > ετ∗k/2) = 0. Using this

result and expression (1.14), it follows that the bound in (1.20) converges to 0 as n → ∞, which

establishes Lindeberg’s condition.

Consider now (L2). For this, it suffices to verify that conditions (a)-(e) of Theorem 2.1 of the

main paper are satisfied. Note that, by letting y = ej in expression (1.18), property (b) follows with

Σj =
∫∫

c(u, v)ej(u)ej(v)dudv. To prove (c), note that, by Proposition 6 of Hörmanm et al. (2015),

since the stochastic process {Yt, t ∈ Z} is L2-m-approximable, the covariance operator C with kernel

c(·, ·) is trace class. Therefore,
∑

j≥1 Σj =
∑

j≥1
∫∫

c(u, v)ej(u)ej(v)dudv =
∑

j≥1 λj < ∞, where

λj , j ≥ 1 are the eigenvalues of the covariance operator C. To establish (d), let first

UY
i =

1

‖wb‖2
(wb(1)Yi + wb(2)Yi+1, . . .+ wb(b)Yi+b−1) , i = 1, 2, . . . , N.

Then, using equation (1.9), we have

Var∗(〈U∗1 , ej〉) =
1

N

N∑
i=1

〈UY
i , ej〉2 −

[
1

N

N∑
i=1

〈UY
i , ej〉

]2
. (1.21)

From expressions (1.11) and (1.13), we get,

∑
j≥1

[
1

N

N∑
i=1

〈UY
i , ej〉

]2
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=
1

N2

‖wb‖21
‖wb‖22

∑
j≥1

n∑
i=1

n∑
t=1

〈Yi, ej〉〈Yt, ej〉

+
∑
j≥1

b−1∑
i=1

b−1∑
t=1

(
1−

∑i
s=1wb(s)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, ej〉〈Ys, ej〉

+
∑
j≥1

b−1∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−i+1, ej〉〈Yn−s+1, ej〉

− 2
∑
j≥1

b−1∑
i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
〈Yn−i+1, ej〉〈Ys, ej〉

− 2
∑
j≥1

n∑
i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)
〈Yi, ej〉〈Ys, ej〉

− 2
∑
j≥1

n∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−s+1wb(t)

‖wb‖1

)
〈Yi, ej〉〈Yn−s+1, ej〉

 . (1.22)

Hence, and because 〈x, y〉 =
∑

j≥1〈x, ej〉〈y, ej〉,

∑
j≥1

[
1

N

N∑
i=1

〈UY
i , ej〉

]2

=
1

N2

‖wb‖21
‖wb‖22

{
n∑

i=1

n∑
t=1

〈Yi, Yt〉+
b−1∑
i=1

b−1∑
t=1

(
1−

∑i
s=1wb(s)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
〈Yi, Ys〉

+
b−1∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
〈Yn−i+1, Yn−s+1〉

− 2

b−1∑
i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
〈Yn−i+1, Ys〉

− 2
n∑

i=1

b−1∑
s=1

(
1−

∑j
t=1wb(t)

‖wb‖1

)
〈Yi, Ys〉

−2

n∑
i=1

b−1∑
s=1

(
1−

∑b
t=b−s+1wb(t)

‖wb‖1

)
〈Yi, Yn−s+1〉

}
.

Therefore, by using (40) of the main paper, we get

∑
j≥1

[
1

N

N∑
i=1

〈UY
i , ej〉

]2
=

1

N2

‖wb‖21
‖wb‖22

n∑
i=1

n∑
t=1

〈Yi, Yt〉+OP (b2/n) = Op(b
2/n) = op(1). (1.23)

Consider now, the first term of the right hand side of expression (1.21). By Parseval’s identity,

∑
j≥1

1

N

N∑
i=1

〈UY
i , ej〉2 =

1

N

N∑
i=1

‖UY
i ‖2

7



=
1

N

1

‖wb‖22

{
n∑

i=1

‖wb‖22〈Yi, Yi〉+

b−1∑
h=1

Wh

n−h∑
i=1

[〈Yi, Yi+h〉+ 〈Yi+h, Yi〉]

−
b−1∑
s=1

(
‖wb‖22 −

s∑
t=1

w2
b (t)

)
〈Ys, Ys〉

−
b−1∑
s=1

(
‖wb‖22 −

b∑
t=b−s+1

w2
b (t)

)
〈Yn−s+1, Yn−s+1〉

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

i∑
t=1

wb(t)wb(t+ h)

)
[〈Yi, Yi+h〉+ 〈Yi+h, Yi〉]

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

b−h∑
t=b−i−h+1

wb(t)wb(t+ h)

)
[〈Yn−i+1, Yn−i+1−h〉

+ 〈Yn−i+1−h, Yn−i+1〉]

}
.

Hence,

∑
j≥1

1

N

N∑
i=1

〈UY
i , ej〉2 =

1

N

n∑
i=1

〈Yi, Yi〉+
b−1∑
h=1

Wh

‖wb‖22
1

N

n−h∑
i=1

〈Yi, Yi+h〉+ 〈Yi+h, Yi〉+OP (b2/n), (1.24)

and because N/n → 1 as n → ∞ and taking gb(h) =
W|h|
W0

in Lemma 5.1 of the main paper, in

conjunction with expressions (1.2) and (1.3), we get, as n → ∞, that
∑

j≥1
1

N

∑N
i=1〈UY

i , ej〉2
P→∑∞

i=−∞ E(〈Y0, Yi〉). Thus, using (1.21) and (1.23), we conclude that

∑
j≥1

Var∗(〈U∗1 , ej〉)
P→

∞∑
i=−∞

E(〈Y0, Yi〉) (1.25)

and, using
∑∞

i=−∞ E(〈Y0, Yi〉) =
∑

j≥1 λj , property (d) is established. Finally, (e) is proved using

the same arguments as in the corresponding case in Theorem 2.1 of the main paper, and taking into

account expressions (1.21), (1.24) and (1.25).

Consider next assertion (ii) of the theorem. It suffices to prove that, as n → ∞, ‖nE∗(X∗n −
E∗(X∗n))⊗ (X

∗
n − E∗(X∗n))− 2πF0‖HS = oP (1). Notice that nE∗(X∗n − E∗(X∗n))⊗ (X

∗
n − E∗(X∗n)) is

an integral operator with kernel

d̃(u, v) = E∗[U∗1 (u)− E∗(U∗1 (u))][U∗1 (v)− E∗(U∗1 (v))]

=
1

N

N∑
i=1

UY
i (u)UY

i (v)−

 1

N

N∑
j=1

UY
j (u)

 1

N

N∑
j=1

UY
j (v)

 . (1.26)

Now,

1

N

N∑
i=1

UY
i (u)UY

i (v)
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=
1

N

1

‖wb‖22

{
n∑

i=1

‖wb‖22Yi(u)Yi(v) +

b−1∑
h=1

Wh

n−h∑
i=1

[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)]

−
b−1∑
s=1

(
‖wb‖22 −

s∑
t=1

w2
b (t)

)
Ys(u)Ys(v)−

b−1∑
s=1

(
‖wb‖22 −

b∑
t=b−s+1

w2
b (t)

)
Yn−s+1(u)Yn−s+1(v)

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

i∑
t=1

wb(t)wb(t+ h)

)
[Yi(u)Yi+h(v) + Yi+h(u)Yi(v)]

−
b−1∑
h=1

b−h∑
i=1

(
Wh −

b−h∑
t=b−i−h+1

wb(t)wb(t+ h)

)
[Yn−i+1(u)Yn−i+1−h(v) + Yn−i+1−h(v)Yn−i+1(u)]

}
and

1

N

N∑
i=1

UY
i (u)

1

N

N∑
j=1

UY
j (v)

=
1

N2

‖wb‖21
‖wb‖22

{
n∑

i=1

n∑
j=1

Yi(u)Yj(v) +

b−1∑
i=1

b−1∑
j=1

(
1−

∑i
t=1wb(t)

‖wb‖1

)(
1−

∑j
s=1wb(s)

‖wb‖1

)
Yi(u)Yj(v)

+

b−1∑
i=1

b−1∑
j=1

(
1−

∑b
s=b−i+1wb(s)

‖wb‖1

)(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
Yn−i+1(u)Yn−j+1(v)

−
b−1∑
i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)(
1−

∑b
t=b−i+1wb(t)

‖wb‖1

)
[Yn−i+1(u)Yj(v) + Yn−i+1(v)Yj(u)

−
n∑

i=1

b−1∑
j=1

(
1−

∑j
s=1wb(s)

‖wb‖1

)
[Yi(u)Yj(v) + Yj(u)Yi(v)]

−
n∑

i=1

b−1∑
j=1

(
1−

∑b
t=b−j+1wb(t)

‖wb‖1

)
[Yi(u)Yn−j+1(v) + Yi(v)Yn−j+1(u)]

}
.

Therefore, d̃(u, v) = c̃N (u, v)+R̃(u, v) where c̃N (u, v) is defined in (1.16) and R̃(u, v) is the remainder

term, and

‖nE∗(X∗n − E∗(X∗n))⊗(X
∗
n − E∗(X∗n))− 2πF0‖HS

≤ 2

∫∫
[c̃N (u, v)− c(u, v)]2dudv + 2

∫∫
[R̃N (u, v))]2dudv.

Using similar arguments as those used in the proof of assertion (ii) of Theorem 2.1 of the main paper,

it follows that
∫∫

[R̃(u, v))]2dudv = op(1), from which assertion (ii) follows because of (1.17).

2 Estimating the standard deviation of the mean function

estimator

Recall that realizations of length n = 100 and n = 500 from the functional time series models (4)

with errors following either the FAR(1) model (7) or the FMA(1) model (8) of the main paper
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have been generated and the standard deviation, σ(τ) =
√
c(τ, τ) of the normalized sample mean

√
nXn(τ) = (1/

√
n)
∑n

i=1Xi(τ) has been estimated, over a set of τ ∈ I, using the MBB, the TBB

and the SB procedures. The exact standard deviation has been estimated using 100, 000 replications

of the models considered. R = 1000 replications of each data generating process have been used

where, for each replication, B = 1000 bootstrap pseudo-time series have been generated in order to

evaluate the bootstrap estimators.

Since the results of both block bootstrap methods are, for small sample sizes, sensitive with respect

to the choice of the block size b, we first present some simulations results which demonstrate the

capabilities of these block bootstrap methods for functional time series. For this, we present, in some

sense, the less biased results that can been obtained using the three different block bootstrap methods.

That is, we present the results obtained when the block size b used has been selected as the one which

minimizes the absolute averaged relative bias T−1
∑T

i=1

∣∣∣σ∗j,b(τi)/σ(τi)− 1
∣∣∣ for j = 1, 2. Here, σ∗1,b(τ)

and σ∗2,b(τ) denote the MBB and TBB estimators of σ(τ), respectively, using the block size b. The

same criterion has been used to choose the “best” probability p of the geometric distribution involved

in the SB procedure i.e., the one which leads to the smallest overall in the sense described above.

For the FAR(1) model and for n = 100, the block sizes selected using the described procedure were

b = 5, b = 8 and p = 0.25 for the MBB, the TBB and the SB procedure, respectively. For n = 500,

the corresponding values were b = 10, b = 18 and p = 0.1. For the FMA(1) model, for n = 100 and

n = 500, we obtained the parameters: b = 4 and b = 14 for the MBB, b = 6 and b = 10 for the TBB,

and p = 0.5 and p = 0.125 for the SB, respectively. The block bootstrap estimates of σ(τ) obtained

using these block sizes for the FAR(1) model are presented in Figure 1 and for the FMA(1) model in

Figure 2.

As it is seen from these figures, the TBB estimates perform best with the MBB estimates being

better than the SB estimates. For both sample sizes considered, the block bootstrap estimators

perform better in the case of the FMA(1) model than in the case of the FAR(1) model while for the

FMA(1) model, the TBB estimates are quite good even for n = 100 observations. The results using

all three bootstrap methods are better for the larger sample size of n = 500 curves.

To demonstrate the performance of the suggested simpler rule b∗ =
⌈
n1/3

⌉
to choose the block

size b, the TBB estimates using this block size are compared with the estimates obtained using the

block size leading to the less biased estimates, as described above. Comparisons for the FAR(1) and

for the FMA(1) model are shown in Figure 3 and Figure 4 respectively.

As these figures demonstrate, for both sample sizes and for both models considered, the TBB

estimates using the block size b∗ perform well, being quite close to the TBB estimates using the

“best” block size in the sense described above.

3 TBB-based Test versus Projection-based Tests

We compare the performance of the TBB-based test with the projection-based tests U
(1)
n1,n2 and U

(2)
n1,n2

proposed in Horváth et al. (2013) (see (3.11) and (3.12) in their paper). We adopted their simulation

10
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Figure 1: Comparison of different bootstrap estimates of the standard deviation σ(τi) of the

normalized sample mean
√
nXn(τj) for FAR(1) time series and for a set of values τj ∈ [0, 1]. The

first figure refers to n = 100 and the second to n = 500. The estimated exact standard deviation is

denoted by • while the mean estimates of the standard deviation of the TBB are denoted by “�”, of

the MBB by “4”, and of the SB by “+”.
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Figure 2: Comparison of different bootstrap estimates of the standard deviation σ(τi) of the

normalized sample mean
√
nXn(τj) for FMA(1) time series and for a set of values τj ∈ [0, 1]. The

first figure refers to n = 100 and the second to n = 500. The estimated exact standard deviation is

denoted by • while the mean estimates of the standard deviation of the TBB are denoted by “�”, of

the MBB by “4”, and of the SB by “+”.
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Figure 3: TBB estimates of the standard deviation σ(τi) of the normalized sample mean
√
nXn(τj)

for the FAR(1) time series and for a set of values τj ∈ [0, 1] using the “best” block size and the block

size b∗ = dn1/3e. The first figure refers to n = 100 and the second to n = 500. The estimated exact

standard deviation is denoted by • while the TBB estimates using the “best” block size are denoted

by “◦” and using the block size b∗ by “+”.
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Figure 4: TBB estimates of the standard deviation σ(τi) of the normalized sample mean
√
nXn(τj)

for the FMA(1) time series and for a set of values τj ∈ [0, 1] using the “best” block size and the block

size b∗ = dn1/3e. The first figure refers to n = 100 and the second to n = 500. The estimated exact

standard deviation is denoted by • while the TBB estimates using the “best” block size are denoted

by “◦” and using the block size b∗ by “+”.
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α = 0.01 α = 0.05 α = 0.10

γ U
(1)
n1,n2 U

(2)
n1,n2 TBB U

(1)
n1,n2 U

(2)
n1,n2 TBB U

(1)
n1,n2 U

(2)
n1,n2 TBB

0.0 0.018 0.019 0.017 0.066 0.072 0.070 0.122 0.135 0.128

0.016 0.070 0.122

0.2 0.051 0.033 0.058 0.136 0.116 0.149 0.216 0.187 0.235

0.046 0.142 0.236

0.4 0.194 0.123 0.150 0.359 0.265 0.322 0.467 0.363 0.431

0.178 0.364 0.476

0.6 0.421 0.296 0.405 0.622 0.518 0.633 0.731 0.625 0.737

0.425 0.649 0.738

0.8 0.686 0.538 0.684 0.857 0.746 0.847 0.915 0.831 0.920

0.674 0.849 0.910

1.0 0.874 0.787 0.870 0.959 0.908 0.952 0.981 0.945 0.977

0.881 0.959 0.987

1.2 0.976 0.937 0.964 0.995 0.981 0.990 0.998 0.992 0.995

0.973 0.994 0.997

Table 1: Empirical rejection frequencies of the projection-based tests U
(1)
n1,n2 and U

(2)
n1,n2 are the results

reported in Table 2 of Horváth et al. (2013). For the TBB-base test, the first line corresponds to

the choices b = 6 and b = 8 and the second line to the choices b = 6 and b = 10 of the block size for

sample sizes n1 = 100 and n2 = 200, respectively.

set up and generated two samples according to the functional time series model (4) with the errors εi,t

following the FAR(1) model (7) with kernel (9) of the main paper, for i ∈ {1, 2}, with mean functions

given by µ1(t) = 0 and µ2(t) = γt(1− t) for the first and for the second population, respectively. All

curves were approximated using T = 49 equidistant points τ1, τ2, . . . , τ49 in the unit interval I and

transformed into functional objects using the Fourier basis with 49 basis functions.

We considered sample sizes n1 = 100 and n2 = 200 and block sizes b = b1 = 6 and 8 (for n1 = 100)

and b = b2 = 6 and 10 (for n2 = 200). The tests have been applied using three nominal levels, i.e.,

α = 0.01, α = 0.05 and α = 0.1. All bootstrap calculations were based on B = 1000 bootstrap

replicates and R = 1000 model repetitions. The results obtained are shown in Table 1 for a range of

values of γ. Notice that γ = 0 corresponds to the null hypothesis. The empirical rejection frequencies

of the projection-based tests U
(1)
n1,n2 and U

(2)
n1,n2 are those reported in Table 2 of Horváth et al. (2013).

As can be seen from Table 1, the TBB-based test performs well retaining the nominal sizes and

having a power which increases as the deviations from H0 increases, as described by the parameter γ.

Compared to the projection-based test U
(2)
n1,n2 , the TBB-based test performs better while its empirical

size and power is similar to that of the projection-based test U
(1)
n1,n2 . Notice, however, that the TBB-

based test is consistent against any alternative for which ‖µ1 − µ2‖ > 0 which is not the case with

14



the U
(1)
n1,n2 (and U

(2)
n1,n2) test if such alternatives are orthogonal to the projection space.
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