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Short-Term Load Forecasting: The Similar Shape
Functional Time-Series Predictor

Efstathios Paparoditis and Theofanis Sapatinas

Abstract—A novel functional time-series methodology for short-
term load forecasting is introduced. The prediction is performed by
means of a weighted average of past daily load segments, the shape
of which is similar to the expected shape of the load segment to
be predicted. The past load segments are identified from the avail-
able history of the observed load segments by means of their close-
ness to a so-called reference load segment. The latter is selected in
a manner that captures the expected qualitative and quantitative
characteristics of the load segment to be predicted. As an illustra-
tion, the suggested functional time-series forecasting methodology
is applied to historical daily load data in Cyprus. Its performance
is compared with some recently proposed alternative methodolo-
gies for short-term load forecasting.

Index Terms—Functional kernel regression, short-term load
forecasting, time series, wavelets.

I. INTRODUCTION

L OAD forecasting is an integrable process in the design
of power systems faced by electricity authorities world-

wide. It involves accurate predictions of electric load over dif-
ferent time periods in the future. It can be broadly classified as
short-term, medium-term, and long-term forecasting, in terms
of planning time horizons. Different planning time horizons for
these categories seem to exist in the literature. Herein, the load
forecasting classification scheme of [1] has been adopted, that
is, up to one day for short-term load forecasting (STLF), more
than one day up to one year for medium-term load forecasting
(MTLF), and more than one year up to 10 years for long-term
load forecasting (LTLF).
Competition, the need of saving rawmaterials that are used in

the production of electrical energy, the reduction of emissions,
and the avoidance of money wasting in general, are the main
reasons that force electricity authorities worldwide to proceed
to a better planning for the production of electricity. The main
characteristics of the programming are the quantity of electrical
energy that needs to be produced and the type of machine that
is going to be used. This can be achieved by requiring accu-
rate STLF. This is an important category of load forecasting. It
plays a major role in real-time control and security functions for
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designing larger power systems [2], [3]. Additionally, the par-
ticular characteristics of the electricity production process are
essential for optimal planning of daily power generation. In con-
nection with the fact that the produced electricity that is not con-
sumed instantly is lost (electricity cannot be stored), it becomes
obvious that the right planning of daily power generation must
have as a result the avoidance of emergency situations as well as
of producing much greater quantities of electricity than the ones
needed. It must also offer the capability to electricity authorities
worldwide to use as far as possible the low functionality cost
machines for covering the electrical energy needed. As a result,
it becomes easily understood that an accurate STLF, like the pre-
diction of the consumption of electrical energy of the next day,
is an important tool for good power planning. Over the years,
a large number of methodologies have been developed to per-
form STLF. These methodologies are mainly emerged from two
different paradigms: classical statistical techniques and compu-
tational intelligent techniques. The former techniques include,
among others, regression models, ARIMA time series models,
Kalman filtering and semi-parametric models [4]–[7], while the
latter techniques include, among others, artificial neural net-
works and expert systems [8]–[10]. Extensive reviews on these
techniques for STLF can be found in [11] and [12].
Here, statistical techniques for STLF are considered. Notice

that STLF is commonly considered to be a difficult task be-
cause the daily load demand is influenced by many factors,
viz., weather conditions, holidays, weekdays, weekends, eco-
nomic conditions, and, last but not least, idiosyncratic and so-
cial habits of individuals. Moreover, daily load demand is com-
monly recorded at a finite number of equidistance time points,
every half of each hour or every quarter of each hour. Thus, in
order to forecast the load demand of the next day, one has to
predict the load demand at 48 or 96, respectively, time points.
Therefore, it seems convenient to think of the daily load de-
mand recorded at these time points as a segment. Prediction is
then performed for the whole segment of time points rather than
forecasting the load demand at each one of these time points sep-
arately. Thus, the functional time series framework is adopted
in our approach [13, Ch. 9], [14, Ch. 12].
In this paper, a novel functional time-series methodology for

STLF is introduced. The prediction is performed by means of
a weighted average of past daily load segments, the shape of
which is similar to the expected shape of the load segment to
be predicted. The past load segments are identified from the
available history of the observed load segments by means of
their closeness to a so-called reference load segment. The latter
is selected in a manner that captures the expected qualitative and
quantitative characteristics of the load segment to be predicted.
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This paper is organized as follows. In Section II, some
methodological background is provided and alternative func-
tional time series methodologies that can be applied for STLF
are reviewed. The suggested functional time series forecasting
methodology is then described in detail. As an application,
Section II illustrates its performance by applying it to the
historical daily electricity load data in Cyprus. Comparisons
with some recently proposed alternative methodologies for
STLF are given. Some concluding remarks are provided in
Section IV.

II. FUNCTIONAL TIME SERIES FORECASTING

Putting the above discussion in a statistical method-
ological context, one seeks information on the evolu-
tion of a (real-valued) continuous-time stochastic process

in the future, where .
Given a trajectory (curve) of observed on the interval ,
one would like to predict the behavior of on the entire
interval , where . An appropriate approach to
this problem is to divide the interval into subintervals

, with , and to
consider the (function-valued) discrete-time stochastic process

, defined by

(1)

where . For the specific STLF application in
mind, where the aim is one-day ahead prediction, the segmen-
tation parameter corresponds to the daily electricity demand.
In practice, the electricity demand is recorded at a finite number
of equidistance time points within each day, say ,
for instance, every hour , every half of each hour

or every quarter of each hour . Letting be
the observation at time point , , within curve
, , the segment containing the total number of obser-

vations of the th curve is denoted by

Therefore, given a “sample” of segments, the
aim is to predict the whole next segment , that is, to predict

A. Existing Approaches

Practically, all investigations today for the aforementioned
functional time-series prediction problem are for the case where
one assumes that the underlying stochastic process is driven by
a Hilbert-valued, first-order, autoregressive processes. This im-
plies that the best predictor, , of curve given its past
history (the “sample” of curves) , is the condi-
tional mean of given [13, Ch. 3]. In practice, however,
an appropriate version of is obtained using some regular-
ization on the predictor of segment . In particular,
projection, spline, and wavelet based regularization techniques
have been developed [13, Ch. 4], [15]–[18].

An alternative approach to this prediction problem was re-
cently suggested [19]. Theses authors developed a predictor via
functional wavelet-kernel nonparametric regression estimation
techniques, using a conditioning idea. In particular, prediction
of segment was obtained by kernel smoothing and condi-
tioning on the last observed segment . The resulting predictor
was then expressed as a weighted average of the past segments,
placing more weight on those segments, the preceding of which
is similar to the last segment. This functional time-series fore-
casting methodology is rooted in the ability to find “similar”
segments. Considering that segments can be sampled values of
quite irregular curves, similarity matching was based on a dis-
tance metric on the discrete wavelet coefficients of a suitable
wavelet decomposition of the available segments. For a similar
approach, see [20] and [14, Ch. 11].
The basic implicit assumption in developing the above func-

tional time series forecasting methodologies is that all relevant
information for predicting segment is essentially contained
in the last observed segment, viz., segment . However, it is
more appropriate to assume that the profile of the daily electricity
load demand depends, in a complicated and unknown way, on a
number of quantitative and qualitative variables of the day to be
predicted. For instance, amongst others, quantitative variables
include daily temperature, daily humidity, and daily wind speed
while qualitative variables include weekdays, weekends, holi-
days, and seasonal characteristics. Apparently, this information
is not necessarily contained in the behavior of the last (observed)
segment .Thus, functional time-series forecasting approaches
that are based on such conditioning ideas can ignore important
information concerning the segment to be predicted.
A kernel regression estimator when both the response and

the explanatory variables are functional was also recently
considered [21]. Thinking of the explanatory variables being
quantitative, such as, daily temperature, daily humidity, daily
wind speed, etc., the resulting functional kernel regression
approach could be used for STLF. However, this functional
regression-based approach does not appropriately take into
account a number of specific factors, the behavior of which
turns out to be important for STLF. For instance, the same
behavior of the daily temperature as an explanatory variable
could lead to a different response, viz., daily load demand,
depending on the seasonal characteristics and on other factors,
such as, weekdays, weekends, and holidays. This suggests that,
in order to perform accurate STLF, one needs to appropriately
take into account not only the behavior of some quantitative
variables but also qualitative characteristics of the segment to
be predicted that jointly affect the daily load demand behavior.
As a result of the previous discussion, one identifies “typ-

ical” curves of daily load demand behavior which depend on a
number of quantitative and qualitative variables. In order to per-
form accurate STLF, one then has to: 1) identify the appropriate
curve of next day’s load demand based on next day’s behavior
or expected behavior of these variables and 2) find in the entire
time series history those curves that are similar to the identified
one. Since the proposed STLF is looking at the entire past for
“shapes” that are similar to the expected “shape” of the day to
be predicted, the resulting predictor is called the similar shape
functional time series predictor (SSP).
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B. Similar Shape Functional Time Series Predictor

Based on the previous discussion, it is assumed herein that
daily load demand depends on several quantitative and qual-
itative variables. Suppose that these characteristics result in a
typical daily load demand shape, so that each curve can be
expressed as

for , , where denotes the indicator function
of the set . The following terms are also defined.
• denotes a
group of deterministic variables, denoting qualitative char-
acteristics while refers to the number of choices the th
qualitative variable allows for.

refers to the different choices that the variable
group membership allows to take (e.g., weekdays, week-
ends, or holidays).

refers to the different values that the variable
season membership allows to take.
Notice that, in order to identify the seasonal characteristics,
it is not only taken into account the “global seasonality”
(i.e., autumn, winter, spring, and summer), but also the
“local seasonality,” which refers to the weather conditions
during the very recent past and which affect the behavior
of the daily load demand. This is important since, for in-
stance, a period of warm days in the winter causes a dif-
ferent behavior of the daily load demand compared to the
one caused by a period of similar warm days in the spring
or in the summer. This local seasonality aspects are also
one of the reasons why regression based approaches are
not very appropriate in this context. For instance, the same
value of the daily temperature (the explanatory variable)
may cause a different daily load demand (the response vari-
able), depending on these local seasonal characteristics.

• denotes the particular value that the
array of qualitative characteristics takes for curve ,
, e.g., is the value of the variable group membership

for curve , is the value of the variable season
membership for the same curve.

• are exogenous random variables,
denoting quantitative characteristics, e.g., is the daily
temperature curve, is the daily humidity curve, and

is the daily wind speed curve.
Notice that these curves are function-valued random vari-
ables, usually called functional random variables in the sta-
tistical literature.

• is a sequence of independent and identi-
cally distributed (i.i.d) -valued Gaussian random
variables, where denotes the space of contin-
uous functions defined on the interval . Furthermore,
it is assumed that they have zero mean and finite variance.
(Note that, in this case, the errors , ,
forms a sequence of i.i.d. Gaussian random variables with
zero mean and finite variance.) It is also assumed that the
noise is independent of for
all , .

In what follows, for simplicity and data availability issues,
attention is restricted to the daily temperature curve , ,
which is one of themain exogenous functional random variables
affecting daily load demand, that is, the following model is con-
sidered:

(2)

for , . (Notice that the suggested methodology
can be straightforwardly modified to any available number of
exogenous functional random variables.) Letting be
the observation at time point , , within curve

, that is

is the segment of the total number of observations of the
th curve .
Given model (2) and based on the “sample”

of segments, the following algorithm describes in more detail
how to construct the suggested SSP, , of segment .
In particular, steps 1) and 2) sort out the problem of identifying
the appropriate shape of the segment to be predicted while step
3) refers to the calculation of the predictor.
Step 1) For segment , specify the values of the group

membership and season membership .
While specifying the group membership is easily
done based on the particular day to be predicted
(weekdays, weekends, holidays), the specification
of the “local seasonality” is more difficult and rather
arbitrary. This is so, since, as explained before, local
seasonality depends on the specific seasonal and
weather characteristics of the very recent past of the
time series and their stability. In the SLP approach,
local seasonality is essential and is taken into ac-
count by selecting a small number of past seg-
ments that are further considered for selecting what
it is called the typical shape or reference segment.
This is done in step 2) of the algorithm.

Step 2) Determine a relevant load profile by specifying a
so-called reference segment, , as follows.
• Find among the last segments those belonging
to the same group membership as segment .
Let be the set of the selected segments, viz.,

(3)

Notice that the length of local seasonality and its
stability is controlled by the parameter which
determines how far in the past one goes to select
a possible set of segments for specifying the ref-
erence segment .

• Let be a predictor of segment .
• Let be any of the (equivalent) distances in .
Then, for each , the reference seg-
ment is obtained as

(4)
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where

and

and

(5)

Notice that the reference segment is ob-
tained as a simple average of selected segments
from the set . These segments belong to

the same group and have the same local seasonal
characteristics, while their temperature segments
, , are sufficiently close to the

predicted temperature of the segment
to be predicted. This “closeness” is controlled by
the parameter . It is also pointed out (and this is
important for practical applications) that it is not
necessary to have the prediction on the en-
tire set of time points in order to
specify the set . In fact, one can compare the
temperature segments and using only the
subset of time points on which the predictions for
the segment are available (or provided by
other sources).

Step 3) Finally, the SSP of the segment is ob-
tained as

(6)

where the weights ,
, satisfy , ,

and . Following the nonparametric
literature, the weights , , are
chosen as

(7)

with for some kernel function
, bandwidth and distance measure

between segments.
Notice that the SSP is obtained as a weighted average

of past segments, where more weight , , is
placed on the segment the shape of which is similar (in terms of
the particular distance used) to the shape of the reference seg-
ment . This clarifies the differences between the suggested
approach and several other approaches proposed in the literature
that are based on conditioning ideas. In the case of conditioning
on the last observed segment , the predictor is obtained as
a weighted average of past segments, where the weight given
to a segment depends on its closeness to the conditioning seg-
ment [19]. For the suggested approach, the role of the condi-
tioning segment is taken over by the reference segment .
This reference segment comprehensively contains all relevant
information regarding the shape of the daily load demand to be
predicted. Thus, the selection of the reference segment is
essential for the quality of the predictor obtained.

In order to investigate the asymptotic behavior of the SSP
predictor, the following set of assumptions 1)–4) (referred to
categorically as Assumption 1.1 in the Appendix) are imposed.
As , we make the following assumptions.
1) and .
2) and .
3) and .
Moreover,
4) is a compactly supported bounded symmetric density.
Requirements 3) and 4) are standard for weak consistency

in nonparametric kernel estimation. Assumption 1) implies
that the number of segments taken into account to calculate
the reference segment , that is, the number of segments
belonging to the set , grows as the sample size increases.
Finally, assumption 2) requires that the bandwidth , used for
obtaining the reference segment , goes to zero in such a
way that the number of segments effectively used in calculating

, viz., , increases to infinity. This is also a standard
assumption for weak consistency in nonparametric kernel
estimation.
Now, under the validity of (2), assumptions 1)–4) above and

for defined as in (6), if

for some , where

Then

where denotes convergence in probability. This result
establishes consistency of the suggested SSP. (The precise
mathematical statement and its proof can be found in the
Appendix.)

III. APPLICATION: ELECTRICITY AUTHORITY OF CYPRUS
(EAC) DAILY LOAD DATA

A. Description of the Data Set

EAC is the organization that is responsible for the genera-
tion, transmission, and distribution of electricity in Cyprus. The
target of EAC is to provide Cypriots with high quality of safe
and reliable services and activities at competitive prices. EAC
uses two types of machines to produce electricity. The first type
of machine is a steam turbine that uses dynamic pressure gen-
erated by expanding steam to turn the blades of a turbine. Al-
most all large nonhydro plants use this system. About 80% of
all electric power produced in the world is by use of steam tur-
bines. The advantages of using such a type of machine are the
high overall cogeneration efficiencies of up to 80%, the wide
range of possible fuels, including waste fuel and biomass, the
production of high-temperature/pressure steam, and the estab-
lished technology. On the contrary, we can mark the low elec-
trical efficiencies, the slow start up times, the poor part load per-
formance, and especially the need for expensive high-pressure
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Fig. 1. Electrical power consumption in Cyprus between 1st January 2005 and
1st January 2010, recorded every 15 min.

boilers and other equipment. The second type of machine is a
diesel engine which uses an electrical generator. Diesel gener-
ating sets are used in places without connection to the power
grid, as emergency power supply if the grid fails. Of course, they
are widely used not only for emergency power but also many of
them have a secondary function of feeding power to utility grids
either during peak periods or during periods with a shortage of
large power generators, although we may say that the cost of
their functionality is forbidding.
The best planning for EAC is to avoid these emergency situ-

ations and use machines which have low functionality cost and
high electrical efficiencies for electricity generation and distri-
bution, which would cover the needs of the whole island. The
most important characteristic of the right plan should be the fact
that the quantity of electricity produced must not be greater than
one needs since the additional electricity produced can not be
stored and is lost. An extremely useful tool for the right plan is
the accurate prediction of the consumption of the electrical en-
ergy of the next day.
Below, the suggested SSP methodology proposed is applied

to a set of daily load data, provided by EAC and the Transmis-
sion System Operator, Cyprus (TSO), concerning the electrical
energy consumption, in megawatts (MW), per 15-min intervals,
viz., , for the period from 01/01/2005 to 31/12/2010.
This dataset is displayed in Fig. 1.
From this figure, a slightly upward trend can be observed

along with a strong periodic component within each year. It is
also evident that the electrical energy consumption slightly in-
creases every year and during the summer months attains its
maximum. Since the goal is to predict the daily shape of elec-
trical energy consumption, and not the overall trend, the daily
curves are rescaled by dividing them by their maximum value.
This leads to daily shape curves that vary between zero and one.
The aim is then to produce accurate predictions of the shape of
the rescaled consumption of next day’s electrical energy. The
predictor is then transformed to the original scale, by multi-
plying the resulting SSP by the predicted maximum value of
the electrical load of the day to be predicted, provided by TSO.
In the next section, we demonstrate how the SSP methodology,
proposed above, can be implemented to fulfill this aim.

B. Implementation of the SSP

In our context, the curves , , that are de-
rived from (1) coincide with the calendar days from the 1st of
January 2005 up to the last day , from which observations are
available. Hence, coincide with the day for which predic-
tion is required. Based on the “sample” of seg-
ments, the goal is to specify the SSP . To this end, the fol-
lowing steps are taken.
Step 1) The value of the group membership for seg-

ment is specified. Feedback from the EAC,
have shown that an appropriate grouping of days,
with similar shape behavior based on some national
characteristics, is the following:
• Group I: Monday, Tuesday, Thursday, Friday.
• Group II: Wednesday.
• Group III: Saturday.
• Group IV: Sunday.
Notice that the work schedule of the public sector
is 07:30–18:00 and the commercial shops are open
09:00–13:00 on Wednesdays. On the other hand,
the corresponding periods on Mondays, Tuesdays,
Thursdays and Fridays are 07:30–14:30 and 09:00–
18:00. As a result,Wednesday is grouped separately.

Step 2) To determine the reference segment , as men-
tioned previously, our attention has been restricted
only to the exogenous random variable , that
denotes the daily temperature segment.All dayshave
been found that belong to same group membership

as the segment to be predicted. The
parameter is set equal to if the segment
to be predicted corresponds to Monday, Tuesday,
Thursday, or Friday and is set equal to if the
segment to be predicted corresponds to Wednesday,
Saturday, or Sunday. This seems to be appropriate
in order to have sufficient information to select the
reference segment while at the same time to retain
local seasonality. Notice that, in looking back, the
procedure selects only days belonging to the same
group as the day to be predicted in order to determine
the reference segment. Regarding the exogenous
random variable , we use a predictor

of . As mentioned earlier, it is not nec-
essary to have the prediction on the entire set
of time points , , to specify
the set . In fact, one can compare the temperature
segments , , and using only
a subset of time points on which the predictions for
the segment are available (or provided by other
sources).More specifically,wehaveusedpredictions
of next day’s temperature at only four time points,
that is, those corresponding to 08:00, 12:00, 16:00,
and 20:00. The actual temperatures predictions of
segment at these time points were taken from
weather forecast Web sites.

Step 3) To further simplify the selection of the reference seg-
ment , the parameter in (5) has been set equal
to
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Fig. 2. RMAE for out-of-sample predictions for SSP (solid line) and WKP
(dotted line) for the 50 randomly selected days within the year 2010.

that is, the reference segment is obtained as

(8)

where is given by (3).
Step 4) The SSP is obtained by (6), where the weights

, , are determined by (7) where
the kernel function is the Gaussian kernel and
the bandwidth are selected by the empirical risk
of prediction methodology [22].

Finally, the computational algorithm related to the above im-
plementation as well as the overall numerical study presented
above has been carried out in the MATLAB 7.7.0 programming
environment.

C. Numerical Results

Based on the above implementation, the SSP functional time-
series forecasting methodology is compared with some other
forecasting methodologies for STLF.
First, the SSP methodology is compared to the recently

established wavelet-kernel functional time series methodology
(WKP) [19]. The comparison is restricted to this forecasting
methodology, since as it has been demonstrated by these au-
thors in a number of simulated and real-data examples, in terms
of functional time series forecasting, WKP outperforms many
well-established forecasting methods. This includes a wavelet
regularization method, a smoothing spline method, the classical
SARIMA model and the Holt–Winters forecasting procedure;
see [19]. To do the comparison, both forecasting methods are
applied to a randomly selected number of days within the year
2010, from the dataset displayed in Fig. 1. The quality of both
SSP and WKP are measured by the relative mean-absolute
error (RMAE) and the mean-absolute error (MAE).
It is evident from the analysis (see also Figs. 2–4) that the

SSP clearly outperforms theWKP. It terms of RMAE andMAE,
only in eight out of the 50 randomly selected days the SSP per-
forms slightly worse than the WKP. Furthermore, in a large
number of days, both the RMAE and MAE of the WKP con-
siderably exceeds the RMAE and MAE of the SSP, as is clearly
seen in Figs. 2 and 3. Looking at each day separately, the SSP
curves are quite close to the actual load curve. At the same time,

Fig. 3. MAE for out-of-sample predictions for SSP (solid line) and WKP
(dotted line) for the 50 randomly selected days within the year 2010.

Fig. 4. Actual (solid line) and predicted load using SSP (dashed line) andWKP
(dotted line) for six randomly selected days within the year 2010.

there are days where the WKP fails to appropriately capture
even the overall behavior of the latter curve (see, e.g., 2 Oct
2010 and 12 Dec 2010).
Next, the SSP is compared with an artificial neural network

(ANN) forecasting methodology based on multiple multi-
layer perceptrons (MMLP) [10]. Notice that the ANN-MMLP
methodology has been mainly developed for application to the
EAC time-series data, and it concentrates on forecasting only
the weekdays (Monday to Friday). Furthermore, the available
software program allows the use of the EAC time-series data
only for the years 2005 and 2006 in order to make predictions
for the year 2007. To do the comparison, the ANN-MMLP
predictor has been calculated for all 55 days of the year 2007
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TABLE I
RMAE AND MAE FOR OUT-OF-SAMPLE PREDICTIONS FROM FEBRUARY TO

DECEMBER 2007

to which the available software program can be applied (pre-
dicting five consecutive days in each month, from February to
December). The SSP predictor has been calculated for the same
consecutive number of days and using the same historical data
as the ANN-MMLP predictor. Table I gives the 5-day average
RMAE and MAE for each month from February to December
2007. It can be seen that the forecasting performances in the
months other than November are generally better.

IV. CONCLUSION

The major contribution of this paper is to introduce a
novel functional time-series methodology for short-term load
forecasting, named the functional similar shape time-series
predictor. The predictor was performed by means of a weighted
average of past daily load segments, the shape of which is sim-
ilar to the expected shape of the load segment to be predicted.
To quantify this similarity, the notion of reference segment
was introduced which captures the expected qualitative and
quantitative characteristics of the load segment to be predicted.
The functional similar shape predictor was theoretically justi-
fied by proving a weak consistency property. Furthermore, its
usefulness for short-term load forecasting was demonstrated
by applying it to historical daily load data in Cyprus. The
numerical results obtained showed that the functional similar
shape predictor works very satisfactory. It outperforms other
statistical methods like the functional wavelet-kernel time
series predictor or ANN methods like the predictor based on
multiple multilayer perceptrons. Notice that, for simplicity
and data availability issues, our attention was restricted to the
daily temperature, which is one of the main exogenous func-
tional random variables. The suggested functional time-series
methodology for short-term load forecasting, however, can also
be modified to take into account other daily exogenous func-
tional random variables. These include humidity, wind speed,
sunshine, and market factors, which might affect daily load
demand. Although the above modification is straightforward

from a theoretical point of view, its practical implementation
depends on the availability of the required time series data.

APPENDIX
WEAK CONSISTENCY OF SSP

Theorem 1: Assume that model (3) is true and that Assump-
tion 1.1 is satisfied. Let be defined by (7) and assume that

(9)

for some , where

Then

(10)

Here, denotes “convergence in probability” and, below,
denotes “bounded in probability”.
To prove the above result, we first prove the following auxil-

iary result, showing that weak consistency of the suggested SSP
, defined by (7), is equivalent to the weak consistency of

the selected reference segment , defined by (5).
Theorem 2: Assume model (3), that Assumption 1.1 [as-

sumption 3)] is satisfied, and that (9) holds true. Let and
be defined by (5) and (7), respectively. Then, (10) holds

true if and only if

(11)

Proof of Theorem 2: We first prove the “if” part of the the-
orem. Assume that (11) holds true. Since

Since

and

the “if” part of the theorem follows.
We now prove the “only if” part. Assume that (10) holds true.

Note that, for each , we have

Furthermore
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Since

as

as

the desired result follows.
Proof of Theorem 1: In view of Theorem 2, it suffices to prove

(11). From (5), it is easily seen that has the expression of a
nonparametric estimator with a uniform kernel. Thus, in view of
Assumption 1.1 [assumptions 1), 2), and 4)], (10) holds true by
standard weak consistency arguments for nonparametric kernel
estimators [23, Ch. 3]. Hence, the theorem follows.

ACKNOWLEDGMENT

The authors would like to thank A. Poullikkas, K. Varnavas
(EAC), and S. Stavrinos (TSO) for supplying the data used in
this work and valuable discussions, Prof. E. Kyriakides and
Prof. M. Polykarpou (Department of Electrical and Computer
Engineering, University of Cyprus) for their predictions, and
M. Frangeskou (Department ofMathematics and Statistics, Uni-
versity of Cyprus) for her help with some of the numerical re-
sults. The authors are also grateful to the editor and the three
reviewers for many useful comments and suggestions.

REFERENCES

[1] D. Srinivasan and M. A. Lee, “Survey of hybrid fuzzy neural ap-
proaches to electric load forecasting,” in Proc. IEEE Intern. Conf.
Syst., Man Cybern., Vancouver, BC, Canada, 1995, pp. 4004–4008,
Pt. 5.

[2] D. Srinivasan, “Evolving artificial neural networks for short-term load
forecasting,” Neurocomputing, vol. 23, no. 1–3, pp. 265–276, Dec.
1998.

[3] P. Laurent, E. Fock, R. N. Randrianarivony, and J.-F. Manicom-Ram-
samy, “Bayesian neural network approach to short time load fore-
casting,” Ener. Conver. Manag., vol. 49, no. 5, pp. 1156–1166, May
2007.

[4] O. Hyde and P. F. Hodnett, “An adaptable automated procedure for
short-term electricity load forecasting,” IEEE Trans. Power Syst., vol.
12, no. 1, pp. 84–94, Feb. 1997.

[5] S. Sargunaraj, D. P. S. Gupta, and S. Devi, “Short-term load forecasting
for demand side management,” Proc. Inst. Electr. Eng.—Gen., Transm.
Distrib., vol. 144, no. 1, pp. 68–74, Jan. 1997.

[6] S.-J. Huang and K.-R. Shih, “Short-term load forecasting via ARMA
model identification including non-Gaussian process considerations,”
IEEE Trans. Power Syst., vol. 18, no. 2, pp. 673–679, May 2003.

[7] S. Fan and R. J. Hyndman, “Short-term load forecasting based on a
semi-parametric additive models,” IEEE Trans. Power Syst., vol. 27,
no. 1, pp. 134–141, Feb. 2012.

[8] S. Rahman and O. Hazim, “A generalized knowledge-based short-term
load-forecasting technique,” IEEE Trans. Power Syst., vol. 8, no. 2, pp.
508–514, May 1993.

[9] A. S. AlFuhaid, M. A. El-Sayed, and M. S. Mahmoud, “Cascaded ar-
tificial neural networks for short-term load forecasting,” IEEE Trans.
Power Syst., vol. 12, no. 4, pp. 1524–1529, Nov. 1997.

[10] M. Markou, E. Kyriakides, and M. Polykarpou, “24-hour ahead short
term load forecasting using multiple MLP,” presented at the Int. Work-
shop on Deregulated Electricity Market Issues in South-Eastern Eu-
rope, Nicosia, Cyprus, Sep. 2008, paper no. 137, pp. 1–6, unpublished.

[11] E. Kyriakides andM. Polycarpou, “Short term electric load forecasting:
A tutorial,” in Trends in Neural Computing, Studies in Computational
Intelligence, K. Chen and L. Wang, Eds. Berlin, Germany: Springer-
Verlag, 2007, vol. 35, ch. 16, pp. 391–418.

[12] J. W. Taylor and P. E. McSharry, “Short-term load forecasting
methods: An evaluation based on European data,” IEEE Trans. Power
Syst., vol. 22, no. 4, pp. 2213–2219, Nov. 2007.

[13] D. Bosq, Linear Processes in Function Spaces. New-York, NY,USA:
Springer-Verlag, 2000, vol. 149, Lecture Notes in Statistics.

[14] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis.
New York, NY, USA: Springer-Verlag, 2006.

[15] P. C. Besse and H. Cardot, “Approximation spline de la prévision d’un
processus fonctionnel autorégressif d’ordre 1,” Canad. J. Stat., vol. 24,
pp. 467–487, 1996.

[16] B. Pumo, “Prediction of continuous time processes by -valued
autoregressive processes,” Stat. Infer. Stoch. Process., vol. 3, pp.
297–309, 1998.

[17] P. C. Besse and D. B. Stephenson, “Autoregressive forecasting of some
functional climatic variations,” Scand. J. Stat., vol. 27, pp. 673–687,
2000.

[18] A. Antoniadis and T. Sapatinas, “Wavelet methods for continuous-time
prediction using Hilbert-valued autoregressive processes,” J. Mult.
Anal., vol. 87, pp. 133–158, 2003.

[19] A. Antoniadis, E. Paparoditis, and T. Sapatinas, “A functional wavelet-
kernel approach for time series prediction,” J. Royal Stat. Soc. B, vol.
68, pp. 837–857, 2006.

[20] F. Ferraty, A. Goia, and P. Vieu, “Functional nonparametric model for
time series: A fractal approach for dimension reduction,” Test, vol. 11,
pp. 317–344, 2002.

[21] F. Ferraty, A. Laksaci, A. Tadj, and P. Vieu, “Kernel regression with
functional response,” Electron. J. Stat., vol. 5, pp. 159–171, 2011.

[22] A. Antoniadis, E. Paparoditis, and T. Sapatinas, “Bandwidth selection
for functional time series prediction,” Stat. Probabil. Let., vol. 79, pp.
733–740, 2009.

[23] D. Bosq, Nonparametric Statistics for Stochastic Processes, 2nd ed.
New York, NY, USA: Springer-Verlag, 1998, vol. 110, Lecture Notes
in Statistics.

Efstathios Paparoditis received the Diploma degree in mathematical eco-
nomics and Ph.D. degree in mathematical statistics from the Freie Universität
Berlin, Berlin, Germany, in 1985 and 1990, respectively.
He is a Professor of statistics with the University of Cyprus, Nicosia, Cyprus.

He is a former associate editor of the Journal of Nonparametric Statistics and
is currently an associate editor of Journal of Statistical Planning and Inference,
Journal of Time Series Econometrics, and Metrika. His research interests in-
clude time-series analysis, nonparametric statistics, functional data analysis, and
bootstrap methods.

Theofanis Sapatinas received the B.Sc. degree in mathematics from the Uni-
versity of Athens, Athens, Greece, in 1989, and the M.Sc. and Ph.D. degrees in
statistics from the University of Sheffield, Sheffield, U.K., in 1991 and 1994,
respectively.
He is a Professor of statistics with the University of Cyprus, Nicosia, Cyprus.

He is a former associate editor of the Annals of Statistics and is currently an
associate editor of Electronic Journal of Statistics and Journal of Statistical
Planning and Inference. His research interests include nonparametric statis-
tical inference, functional data analysis, and structural properties of probability
distributions.


