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Supplementary Material

This note contains detailed proofs for Theorems 1-6 and Propositions 1-2. Proofs of most
auxiliary statements are also included for completeness. Throughout this note, we use a generic

positive constant C' which is not necessarily the same, even within a single equation.

S1. Non-adaptive and adaptive minimax rates of convergence under pointwise [“-risks
(1 <u < o) in the standard nonparametric regression model.
First we prove Theorem 1 (non-adaptive case).
Proof of Theorem 1.
u(r—1/p)

[Lower bound] Ry"(f, By ,(A),to) > Cn 20-1/»+T as n — oo is equivalent to the following: for any

estimator f and any sequence B, — oo as n — 00,

u(r—1/p) ~
lim sup nQ(T—l/mpﬂBn sup El|f(to) — f(to)|"| = oo. (7.1)
feBg o(A)

Suppose now that (7.1) does not hold for some estimator f and some sequence B,, such that B,, — oo

and n/log (B,) — 00 as n — oo, i.e.,

_u(r—1/p) _ z
nz(r—l/p)p-&-l Bn Sup E‘f(to) — f(t0)|u < Q. (72)
feBy 4(A)

lim sup

Hence, for any fo € By ,(A'), A" < A,

u(r—1

/p) ~
lim sup [nz“'l/”p“ B, E|f(to) — fo(t0)|u] < 0.

Thus, Theorem S1.2 yields that, for B,, — oo and n/log (B,) — 0o as n — oo,

u(r—1/p) ~
lim inf (n/ log (Bn)) 2 1/p) 1 sup E|f(to) — f(to)["| >0
fE€By 4(A)
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and, hence,

_u(r—1/p) x
limsup [n20-1/»+1  sup  E|f(to) — f(to)|“| = oo,
feBg 4(A)

which contradicts the assumption made in (7.2). This completes the proof for the lower bound of
Theorem 1.
[Upper bound] The validity of the upper bounds follows from the following theorem. (Note that
Theorems S1.1 and S1.3 are proved under a slightly more general condition on the error distribu-
tion.)

Theorem S1.1. Assume (S1), (S2) and (S3), 1 <u < o0, and f € B, (A) with 1 < p,q < o0,
A>0and1l/p<r<s. Let ¢; be the pdf ofN(O,o]z/2), 0<og<oj<0<o00, and letf be a hard

thresholding wavelet estimator with threshold t;y,:

ajn*1/2 for j=L,L+1,..., 71,

tin =
on~ /2 logy(2uj)]? for j=j1+1,...,J—1,

where j1 = L B logy n. Then, for any ty € (0,1),

2(r—1/p

u(r—1/p)

Ry(f. By, (A),t0) = O (n_z(’“‘l/”)“> as mn — 0o.

Proof of Theorem S1.1. It is easily seen that the risk is bounded by

RY(f. By (A), ) < > 2PPEG — )60
kEKL_l(to)
+ Y 2820 — 0k |l¢llo
k€K _1(to)

J—1
+ 30 ST PPEGL )" 1l

J=L keK;(to)

J-1
+ Y > 20— 0l Wl

J=L keK;(to)

+ > > 2P0l Wl

j=J keK;(to)
= [Qu1 + Q2 + Q21 + Q22 + Q3]". (7.3)
Term Q11 + Q12 in (7.3) is bounded by

C Y 2APNVONHC Y 2MPe -0 < OnTVPop + CnTT
keKr 1 keK _1

= O () o () = (nzéf/ﬁﬂ> ,
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due to Lemma A.4 in Bochkina and Sapatinas (2006) and the fact that V(6;) = O(n™").
On the other hand, term Q3 in (7.3) is bounded by

cS 3 2P, < ngj/22—j<r—1/p+1/2):O(Q—J@«—l/p))
]:J kEKJ(tO) ]:J

— 0w tP) =0 (n—u(-’/)l) ’

due to Lemma A.4 in Bochkina and Sapatinas (2006) which also implies that term Qg9 in (7.3) is
dominated by C n—(r=1/p) (log n)H(P=OO)_
Thus, we have that

J—1
fu G-y . A
< Cn =10+ 4 C > > 20 [E|9jk — Oj|"
J=L keKj(to)

i

R(F. By (A).t0)] (7.4)

Consider separately the sums for low and high resolution levels, using Lemma A.3 in Bochkina and
Sapatinas (2006) to bound the summand in the first sum and Lemma S5.6 to bound the summand
in the second sum:

J1
[RZ(f, B;q(A),to)]l/“ < On~ (1/p/Qr-1/p+1) | CZ 2j/2tjn
j=L
J-1
+ O D2 YT [Eldi — 0] Lldje > tjn)]'"
J=j1+1 keK;(to)
The first sum is easy to calculate since, by definition, ¢;, is independent of j for j < ji1, and it is
(r—1/p

__(r=1/p)
equal to Cn~ 20=1/p)+1. Since for j > ji tjn\/n — oo, by Lemma A.4 in Bochkina and Sapatinas

(2006) and Lemma S5.7, the second sum is bounded from above by

J-1 J—-1
Cn=1/2 Z 2j/2j(u+1)/2u27j+c Z Z 2j/2‘9jk|
Jj=j1+1 J=ih+1keK;(to)
~1/2 (ut1)/2u0—7j1 /2 <« —j(r=1/p) — =i/
< Cn [logn|*" woTn/E 4 C Z o—Jr=1/p :O(n 2(r71/p)+1).
Jj=j1+1
u(r—1/p)

Thus, for any ¢y € (0,1), R;“”L(f, Bp,(A),to) < Cn 20-1/»+1 as  n — oo. This completes the proof
of Theorem S1.1.
Thus, the proof for the upper bound of Theorem 1 is completed and, hence, Theorem 1 is

proved.

We now prove Theorem 2 (adaptive case). In order to do that, we need some preliminary

results.



4 NATALIA BOCHKINA AND THEOFANIS SAPATINAS

Theorem S1.2. Take (7,p,q) such that r > %, 1 < p,q,< o0, and a sequence B,, such that
B, — o0, n/log (B,) — 00 as n — oo. Let f be an estimator of f based on observations from

the standard nonparametric regression model (2.1). If fo € B} ,(A) with 0 < A" < A satisfying

u(r—1

/p) ~
lim sup YD E B, E|f(ty) — fo(to)\“] < 00, then

lim inf [(n/ log (Bn))% sup  E|f(to) — f(to)|*| > 0.
feBg4(A)

Proof of Theorem S1.2. Let X be a random variable having either distribution Py, with density
fo, or distribution Py, with density fp,, with respect to some dominating measure. For any estimator
d = d(X) of 6 € {6p,0,}, its [“-risk (1 < u < o0) is defined by R*(6,0) = E|6(X) — 6]|*. Denote
by k() = f,(«)/ fo,(7) the ratio of the two densities. (x(x) = oo for some z is possible, with the
obvious interpretation k(z) fg,(z) = fo,(x).)

For 1 < u < oo, denote by u* the value satisfying 1/u + 1/u* =1 (i.e., u and u* are conjugate
numbers). Let T := L (60, 01) = [Eg, (5(X))*"]"*

, with obvious change for u* = oo (this is a

measure of distance between the two distributions Py, and Py, ).

Take f,,(t) = v, 1g(Bn(t —to)) + fo(t), t € [0,1], where

1) g is a compactly supported and monotonically decreasing function satisfying (i) g € B} ,(A—

A", (ii) g(x) = 0 for z € (0,1], g(0) > 0, and (iii) ||g||3 > O (such a function is easy

to construct, either directly or by using wavelets); denote by b = [uc,||g||3]~! > 0 where
cy =1/[2(u—1)] for u > 1 and ¢, =1 for u = 1;
(r—1/p) 1
2) v = (n/(blog (By)))2=1/2)+1 and S, = (n/(blog (By,)))2r-1/p+1,
Note that 2) above implies that v23, = n/(blog (B,)) and 7, * TP, Then, in view of

Lemma 1 in Cai (2003), f, € B, ,(A).

Write P and P} for the probability measures on R"™ generated from the standard nonparametric

2 is assumed known, we take

regression model (2.1) with f = fp and f = f,, respectively. Since o
o2 = 1 without loss of generality. Then a sufficient statistic for the family of probability measures
{Pgy,P}} is given by the log likelihood ratio T}, = log(dP}/dPg) (see, e.g., Brown and Low (1996b)).
Set pf, =>4 {W}, where t,; :=i/n,i=0,1,...,n. Then,

T N(=pp/2, pi) under Pg
n!\./
N( pp/2, piy) under P7,
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and k(z) = e”. Note that, for large n and r > 1/p+ 1/2, pl, = p, :=n 01 %éito))dt, where
pn = n|fa — foll3 = 77,28, 1g]13 (by following the arguments of Section 5 in Brown and Low

(1996b)). Now, define g by

G(Bn(t —t0)) = g(Bn(tni —t0)), tni—1 <t <tp;, i=1,2,...,n,

with §(0) = g(0). Then, pl, = n fj ZEel=tod gy

n

Following the arguments in the proof of Theorem 4 in Cai (2003), we can rewrite I, =

/

/ * __Pn__ ~ /
e =D/2 — ¢2w-T) for 1 < u* < oo, and for u* = o0, I, = ||k(x)l(z < p)]lec = e’». We

ub)ehncu where pi, = pl, — pp. Substituting the

can unify the two cases by writing I+ = ™' B/
values of 3, and =, in the definition of g, we get that [~ = B/ "etneu gince ny, 2B, /b =log (By).

Since pu,, does not necessarily goes to zero when 1/p <r < 1/p+1/2 , we use the assumption
that ¢ is non-negative and decreasing to obtain the inequality that p, < 0 for » > 1/p, which is

sufficient for our purpose. Indeed, since g is non-negative and decreasing, for ¢t € [ty ;—1, tni], we get

G2 (Bt — t0)) = ¢*(Ba(tni — t0)) < g2 (Ba(t — to)),

implying that p/, < pn (i.e., pn < 0) and thus that I, = ePnc < ePrce = By,

Let now 6, = fn(to), 0o = fo(to) and 01 = f,(to). Note that for sufficiently large n,

A = |fu(to) = folto)] = g(0)7, "
For some C' > 0 and large enough n, Lemma 2(i) in Cai (2003) states that
R“(6p,01) = AY(1 — uey Ly /A),
where R"(d,,60p) < €¥; in our case, it is given that &, = Cl/“n_%&;l/u. Substituting the

wr

value of &, and the upper bound for I+, we get

- w (r—1/p)
R0, 01) = E|f(t0) — fulto)]" = (9(0)) {1 oy CM e g Bl o<1>m<g<o>>1}
u(r—1/p)

u(r—1/p) Sur—1/p)
—[bg(0)] X7 <1og Bn) s
n

X {1 —u Cl/“(blog(Bn))%(l + 0(1))(9(0))‘1}

u(r—1/p)

_uw(r=1/p)  (log By, \ 2=1/p)+1
g T (REE) T 1y o),

This completes the proof of Theorem S1.2.
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We are now ready to prove Theorem 2 (adaptive case).

Proof of Theorem 2
[Lower bound] Consider two Besov classes B} /. (A;) with r; > 1/p; fori =1,2. Let 0 <ry—1/pa <
r1 — 1/p1. Applying Theorem S1.2, it immediately follows that if an estimator fn satisfies, as

n — 00,

lim sup [nl sup  E|fu(to) — f(tO)‘u] <00
fEBzTr} ,q1 (A1)

for some [ > u(ra — 1/p2)/(1 4 2(r2 — 1/p2), then

_ulrp—1/py) _ .
lim inf [(n/ logn) 22 1/p2) 1 sup  E[fn(to) — f(toﬂu] > 0.
feB;gqu(AQ)

This completes the proof for the lower bound of Theorem 2.

[ Upper bound] The validity of the upper bound follows from the following theorem.

Theorem S1.3. Assume (S1), (S2) and (S3), 1 <u < o0, and f € B, (A) with 1 < p,q < o0,
A>0and1l/p<r<s. Let ¢; be the pdf ofN(O,ojz-/2), 0<o<oj<0<o00, and let f be a hard
thresholding wavelet estimator with threshold t;, = ajn_1/2(uj log 2)1/2 forj =L L+1,...,J—1.
Then, for any to € (0,1),

u(r—1/p)

P — . n T 2(r—1/p)+1
Rn(f7qu(A)atO) =0 <logn> as mn — Q.

1

Proof of Theorem S1.3. Let j, be such that 272 = (%) **1 From the proof of Theorem S1.1
it follows that we need to find an upper bound on (7.4) which we consider separately for low and
high resolution levels:

J2 4 . J—1 4 .

ST PPEG -0+ > Y PPEG; — 03%)"]" = Ri + Re.

j=L k€K;(to) j=j2+1 keK;(to)
By Lemma A.3 in Bochkina and Sapatinas (2006), the first sum is bounded from above by

J2 J2
C Z 2j/2tjn + O(n71/22j2/2) — O~ 12 Z 2j/20_jj1/2 4 O(n—1/22j2/2)
j=L j=L

) A n —v/(2v+1)
< COnY2[log, n]Y/?272/% 4 O(n~1/?272/%) < © <logn> .

1/2

In the proof of Theorem S1.1, we showed that if ¢;,n"/* — oo as n — oo,

Eldjx — 05" I(|dji] > tjn) < Cofn™“2|tjny/n/oj|" " exp{—(tjnv/n/o;)?/2},
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which holds here since for j > ja, tjnn1/2 > Cj21/2 = C'log, (ﬁ) — 00 as n — 00.

1/2

Note that since jo < ji and ¢, n'/* — oo for j > jo as n — oo, we can apply Lemma S5.7 to

obtain an upper bound on the second sum:

J—1
C Y 2Pam T Plta/n /o TV exp{ — (tjn/n/0;)? /2u}
Jj=jo+1
-1 J—1
< COn~'/? Z 23/2j1/2+1/2“exp{—jlog2/2}<Cn_1/2(logn)1/2+l/2“ Z 1
Jj=j2+1 Jj=ja2+1
~1/2 —v/(2v+1)
_cofn (logn)*+1/2 — ¢ n ‘
logn logn

This completes the proof of Theorem S1.3.
Thus, the proof for the upper bound of Theorem 2 is completed and, hence, Theorem 2 is

proved.

S2. Proof of theorems for non-adaptive Bayes factor wavelet estimators

1
Set g1 = W

Proof of Theorem 3. Following the proof of Theorem S1.1, we only need to consider (7.4):
Il /2 - 1/u
R=Y) 27 % [E|9jk = Ojil = Siow + Shigh
Jj=L k€K (to)

where Sj,,, represents the sum over indices L < j < j1 and Spign represents the sum over j; < j <

J — 1. Note that for the low resolution levels

vi/v/n = c2min=12 = gp=mli—dpmea=1/2 0 a5 p - oo, (7.5)
since mye; — 1/2 = % < 0. Similarly, for the high resolution levels,
vi/vn = C2m2in =12 = gom2U—ipmeai=1/2 _y o a5 — o0, (7.6)

ma—(r=1/p+1/2) -

since moe; — 1/2 = 2(r—1/p)+1

Low resolution levels, L < j < j1.

We use Lemma A.3 in Bochkina and Sapatinas (2006) to bound Sj,,, from above:

J1
Siow = D27 Y minlty, ]) + O 012,
Jj=L keK;(to)

since Ky ; = fj;o [z["pj(z)dz = co} fj;o |z|“e‘|z|ﬁdz < C7" < oo (uniformly).
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Since vj/y/n — 0 due to (7.5) and prior h satisfies the assumptions of Lemma S5.5, we can
apply Lemma S5.5 together with the upper bound for the threshold under power-exponential errors
(Lemma 4(i) in Pensky and Sapatinas (2007)) to obtain the following bound:

Ji

: : Sy 1/6 .
Siow < Y PPyt O P07 <72 Y20 log (B! )|+ 0@ 207
Jj=L j=L

J1 B
< nl/? Z 21/2 [log (Bjm/ﬁuj_l)} e + O(2j1/2n71/2) =0 (n_2(r11/g+1) )
j=L
since Bjm/ﬁuj_l = 2i@—m)pbi+1/2 < opbitl/2+er(a—mi)+ < ¢ ynder the assumptions of the
theorem. Thus, for the low level sum the rate is optimal.
High resolution levels, j1 +1 < j < J —1.
We need to show that the following sum is bounded by Cn=*/(¥+1).
J-1
J/2 j ]
Swigh = > 273 Bl -0l
Jj=j+1 keK;(to)
By Lemma S5.6,
J-1 J-1
Shigh < 2 > 223" (B0 — di["I(djk| > )] 42 D0 22D (0.
Jj=j1+1 kEKj(to) Jj=n-+1 kEKj(t())

Due to Lemma A.4 in Bochkina and Sapatinas (2006), the second sum is bounded by

J—1 J—1
C Z 91/29=i(r=1/p+1/2) _ Z 271=1/p) — O(p /1)) as n - 0.
Jj=in+l1 J=n+l

Note also that v;/y/n — oo due to (7.6). Now we consider the first term.
Consider separately 2 cases: 5 <1 and g > 1.
1. B < 1. In this case A\, = 0 and, if 8, > 1, by Lemma 2(ii) in Pensky (2006),

G =1+ o(n; ") < Bju Ve,

implying that I(|d;x| > tjr) = I({jn(djr) > Bjn) = 0 and thus the first sum is zero.
Note that f3;, > 1 since B, = C2m2ipb2 > Opb2tei(a2)+ 5 o since by + e1(a2)4 > 0.
2. 8 > 1. In this case, we bound the summands in the first sum using Lemma S5.7 and Lemma

S5.3:

E|0jc — dii[“I(|dj| > t;n) < On~“2[tjoy/n/oj] +letnVi/o)"

= Cn™[log ] VALY,
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since fBj, — oo for j > ji due to by +e1(az)+ > 0, and thus tjnnl/2 — 0.
Thus, the second sum in this case is bounded by
J—1
/2 — -1
C Y 2P 2 log ) D
Jj=Jj1+1
J—1
Cn~ 1?2 Z 27/2[by log n + agj log 2] (W D/uby=b2/ug=azj/u
Jj=j1+1

J—1
< Cn71/27b2/u[(62+El(a2)+)logn](u+l)/uﬁ Z 9i(1/2—az/u)

J=n+1
The last sum is equal to
Cn=1/2=b2/ullog p)+(ut1)/uB, 1/2 —ay/u =0,

Cn~(=e1)/2p=(bateraz)/ufjog p)(wtD/uB - 1/9 — ay/u < 0.
Thus, this sum converges to zero at a rate not slower than the optimal if

by +az>u(l—e1)/2 if az <u/2,

by +e1a9 >0 if as > u/2,
which can be rewritten as

by +e1ag > (u/2 —a2)(1—e1) if as <wu/2,

bo +e1a2 >0 if a2>u/2,

or bo +e1a2 > (u/2 —az)+(1 —e1). It is easy to check that this condition implies by + £1(az)+ > 0

required earlier. This completes the proof of Theorem 3.

Proof of Theorem 4. Following the proof of Theorem S1.1, we only need to consider (7.4) which
we consider separately for low and high resolution levels.

Low resolution levels, L < j < j1.

Since m1 < r—1/p+1/2, v;//n — 0, following the proof for the low levels of Theorem 3, the
sum for the low levels is bounded by the optimal rate plus Z;lz ; 27tj, which achieves the optimal

rate if (j,4/n/v; < C for the considered j (Lemma S5.5), i.e. given

Cpl/Hbigla=miin i f q) —my >0,
BinV/n/v; = pl/2+bigla—m)j COnl/2+b1 if ap—mp =0

Cnl/2+b if ap—mq1 <0
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or, equivalently, if
1/24 b1 +e1(ar —my) <0 if ag —my >0,
1/240b: <0 if ap—m1 =0
1/24+b <0 if ag—mq <O0.
High resolution levels, j1 +1 < j < J—1.

Since ; is a heavy tailed density (3.3), by Lemma 2 (ii) in Pensky (2006),

R ¢1C) B ,
Gin(z) Jp; (Vi) L+0o(1) < Bjn,

since Bj, = C2%27n%2 > OnP2+e1(@2)+ 5 o0 as n — oo due to by + £1(ag)+ > 0. Thus, I(n(|dsx]) >

Bjn) = 0 and the second sum is zero. This completes the proof of Theorem 4.

S3. Proof of theorems for adaptive Bayes factor wavelet estimators
To prove adaptive error rates, we use another division of the resolution levels, with the critical
level jy defined by
1 n
jo=— ——1 — . 7.7
J2 2(r—1/p)+1 82 <logn> (7.7)
Note that this “adaptive” critical level is smaller than then “non-adaptive” critical level j;.
Lemma S3.1. Assume (S1), (S2) and (S3), 1 < u < oo, and f € B}, (A) with 1 < p,q < oo,
A>0and1l/p <r <s. Let p; be the pdf ofN(O,UJQ-/Z), 0<o<oj <0 <00, and let far is the
corresponding Bayes Factor estimator. We assume that h is such that (j,(x) increases for x > 0.

Denote fjn, = max(1,v;/v/n), vin = Binfiny/n/vj = 00 as n — co. Then, for any ty € (0,1),

__(r=1/p)
n > @(r—1/p)+1)

u( g T 1/u <
R (f5p, Bl (A), to)] /" <C <1ogn

(7.8)

J2
+Cn~1/? Z 2j/2fjn[10g(oso,h”j”>]1/2
j=L

J—-1

n
Jj=j2+1

Proof of Lemma S3.1. Following the proof of Theorem S1.1, we only need to consider (7.4), and

using Lemma A.3 in Bochkina and Sapatinas (2006) and Lemma S5.6, we have that

J2
R e By (A) )]/ < Cn/ 0 4 03 93l
j=L

J—1
+ C Yy PPN B0 — dji“T(|djk| > )]/
Jj=j2+1 keK;(to)
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By Lemma S5.4, the first sum is bounded by

j2_ 2 v? 12 1/2
C Z 2]/2tjn <C Z 2]/20jn_1/2 (1 + é) [log(cwhﬁjnm)}

j=L j=L

J2
< Cn_1/2 Z 2j/20jfjn [log(C@hﬁjnfjn\/ﬁ/Vj)] 2 .
J=L

By Lemma S5.7 and Lemma S5.2, the second sum is bounded by

J—1
Cn=2 N 2P [0 /) Y exp{—[tjno; /V/n)? Ju}

Jj=j2+1

J—1

< Cn 2N 23 (log (B max (L, v/nfvy)) V2B max(1, v /)]
j=j2+1
]Jj—l

< On2 N 2P log(Bin fin/n/vi)| T2 B fin/n i) T

J=j2+1
Thus, Lemma S3.1 is proved.
If we bound the logarithmic term in the sums from above, we obtain the following corollary.

Corollary S3.1. Assume that v; and B, are such that for allj = L, L+1,...,J—1,v; < cyn
and Bjn\/n/vj — 0o as n — oo such that log(Bjny/n/v;) < Blogn for some ¢, B > 0. Then, under

assumptions of Lemma 1, for any to € (0,1),

r—1/p

2 “Ir—1/p) 1 S1j2-1/2u -1
[RZ(fBF’B;q(A%tO)]l/U<C< z > ’ +C< n ) Z 2]/2(ﬁjn/yj)_1/u-

logn logn P

(7.9)

We are now ready to prove Theorems 5 and 6.

Proof of Theorem 5. By substituting assumption (3) of the theorem into Corollary S3.1, we

obtain the following bound:

(R (fr, Bpg(A), to)] Mo <10gn> " <logn> Z 22y Mg el
J=j2+1
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The latter sum is bounded by

o n~b/u=1/2upe(1/2=aju) = 1/9 _q/u <0
n 1/2u —b/u— u
n=b/u=1/2up(1/2=a/u), 1/2—a/u>0
nfb/u71/2u+€1(1/2*a/u)’ a > u/2
n O\ L2
pb/u=1/2ut1/2—a/u a<u/2

—1/2
1/2u+1, —b/u—1/2u+(u/2—a)+/u
(logn) n

n -1/2 1/2u4-1 n _2(:—711/27;-"-1
C <1 ) (logn)Y/?utt < C <1 ) ,
ogn ogn

due to assumption b+ 1/2 — (u/2 — a)4 > 0. Thus, Theorem 5 is proved.

N
Q
/\
<}
o
S

Proof of Theorem 6. Following the proof of Theorem S1.1, we only need to consider (7.4), and

using Lemma A.3 in Bochkina and Sapatinas (2006) and Lemma S5.6, we have that

J2
[RY(fBr, Byy(A), to)]V" < Cn7/@ri L 0N~ 2/,

j=L
J—-1 4
+C 3 2R YT (Bl — diel U dsi] > )]
Jj=j2+1 kGKj(to)

a) Low resolution levels. Since v;/y/n — 0 and h is either heavy tailed (3.3) or normal, we can

apply Lemma 4(i) in Pensky and Sapatinas (2007) to bound the first sum by

J2
On~Y/2 " 292 log(Bnv/n /)] < O~ (l0gn) 22212 = © <n

>—(T—1/p)/(2(r—1/p)+1)
oy logn

)

since we assume that log(Bj,v/n/v;) < Bllogn]%/2.

b) High resolution levels. By Lemma S5.7, we have
B0 — 05x]"I(|dji| > tjn) < Cn ™/ ?[tjv/n/o;] el

and by Lemma S5.2, we have ¢;(tjnv/n) < 0;(0)(Bjny/n/v;)~! since vj//n — 0. Hence, tj, >
Con2[log(Bjnv/n/vi)|"? with Bjn/n/vj — oo, implying

E|1, — 0j"I(|djr.| > tjn) < Cn= 2 [log(Binv/n/v;)]| VBB, /n /v 1,
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and

J—1 J—1

SN 2P2EB — 0l I dj] > tin)]V" < OV log p) D/ N 02]8, Jy )1
J=Jj2 keKj(to) J=Jj2

We have the same sum as in the proof of Theorem 5 but with a different power of the logarithmic
factor. Therefore, under the same assumptions as in Theorem 5, we obtain the optimal rate of

convergence. Hence, Theorem 6 is proved.

S4. Proof of propositions for a priori Besov regularity
Proof of Proposition 1. According to Theorem 3 in Pensky and Sapatinas (2007), we need to

check that
J—1

: j —1,-1 min
Jim [ +1/2) -1 g /Ppmin(,a) < o,
j=L

Denote k = min(p, ¢q) € [1,00), then the sum can be written as

J1 J—1
Cn~Fb1/p Z orj(r+1/2=mi—a1/p) | cu,—rb2/p Z 9rj(r+1/2—mz—az/p)
J=L J=j1+1
Cn—nbl/p+n(r+1/2—m1 —a1/p)+ [log n][(r+1/2—1/p—m1 —a1/p=0)

+ Cn—nbg/p+ﬁZ(r+1/2—m2—az/p) [lOg n]1'(7"—&—1/2—1/1)—7712—02/1):0)7

where Z = 1ifr+1/2—1/p—mgo—as/p > 0 and Z = m ifr+1/2—1/p—mo—as/p < 0. This
sum is finite as n — oo if by /p— (r+1/2—m1—ai/p)+ > 0and ba/p—Z(r+1/2—ma—az/p) > 0,
the inequalities are strict if r +1/2 —mj —a1/p =0 or r + 1/2 — mgy — ay/p = 0 respectively.
Proof of Proposition 2. According to Theorem 3 in Pensky and Sapatinas (2007), we need to
check that

J-1

1 j —1 p—1/pymin
nh_)n;o [2](7""'1/2)1/]. lﬁjn /p] P9 « 5.
j=L

Denote k = min(p, ¢q) € [1,00), then the sum can be written as

J—1
Cn=b1p 3 rir+1/2=m=(a4m)/p) . Gy =1/ 2m=(am) )+ [lgg ] Hr+1/2-1/p=m—(at 1) 5=0)

j=L
which is finite as n — c0 if b/p — (r +1/2 —m — (a +m)/p)+ > 0, and the inequality is strict if
r+1/2—m—(a+m)/p=0.
S5. Auxiliary lemmas.
Lemma S5.2. If ¢; and h are symmetric unimodal density functions, then,

O

i(v/nt; < B min (0),
pi(Vntjn) < Bin (%(0) NG
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Proof of Lemma S5.2. Note that the symmetry and unimodality of ¢; implies that ¢;(x) <
©;(0) for any x. Therefore, the equation for the threshold t;, (see expression above (3.11)) can be

rewritten as follows

[T Vnei(Viltin — 2))vih(viz)de

Bim = Gin(tjn)

Vnp;(v/ntjn)
_ J25 Ve Oh(vim)de— p;(0)
- Vi (v/ntjn) ~oi(Vntjn)’

Similarly, by symmetry and unimodality of h, we have

VT i (vna)vih(vj(tjn — x))dx
Bin = Cin(tin) = Joe Ve (Vnwvih(vy(t )

Vnei(vntjn)
_ J72 nei(vna)vih(0)da __ vh(0)
- Vnpi(Vntjn) Vinei(Vitjn)
Rearranging the terms, we have
@i (Vitin) < min { 85 1;(0), 87 0(0)v/v/n } (7.10)

Thus, Lemma S5.2 is proved.

The following lemma is an obvious corollary from Lemma S5.2.

Lemma S5.3. If p;(z) = Cgaj_le*‘x/"ﬂﬁ, B >0, and h is a symmetric unimodal density, then

Vitin > o max{[log (%{g;}f)]l/ﬁv [log (Bj,n)}l/ﬁ}-

Lemma S5.4. Take @;(z) ~ N(O,UJZ/2), (x)/h(x) < Cyp, and let (jn(x) be increasing for

x > 0. Then,
) 1/2

1/2
Vs n
tin < 0’jn*1/2 (1 + ;) log thﬂjn 1+ -3
Vi

Proof of Lemma S5.4. Since (j,(z) increases for > 0, (jn(z) > Bjy if and only if z > t;,. We

can find the following lower bound on (j(z) using h(x) > th ©;j(z). More precisely,

Gnls) = Testav) vy [ il = )Vl

WV

Caleevm vy [ oila = Ve iy

—00

= C’; \fg/ exp{—(n+V]2)y2/032+2nxy/aJ2-}dy

U

2.2
nx
= O} J exp{ }
h 2\ 2
® ij+n (n+vj)aj
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Take z > 0 such that C;,i \/Vj exp {( n’g? } = fBjn. Then,

2 2
vitn ntv)o;

1/2
5 /

1/2
vy n
tin ST = \/ﬁO’j (1 + 7’i> log Ccph/Bjn 1+ ﬁ
J

Thus, Lemma S5.4 is proved.

Lemma S5.5. Let ¢; and h be symmetric unimodal densities, and p; have finite variances
Ujg-, 0<cg<o0; <6 <00, h has a bounded second derivative, and (j,(x) increases for x > 0. Then,
if vi/v/n — 0 as n — 00, Bjny/n/v; < Cy if and only if tj, < Con~Y2, for some C1,Cy > 0 which

depend on ¢ and h but not on v; or n.

Remark S5.1. If the condition that h has a bounded second derivative is replaced with the con-
ditions that @;(x)/h(x) < C,pn and @; have bounded second derivatives (uniformly in j), then

Binyv/n/vj < C1 implies that tjy, < Con=1/2.

Proof of Lemma S5.5. Consider the function (j,(z) at point x,, = /nv, where v is independent

of n. Then,

—+00

Cnlen) = los(Vaza) "y, / 3 (/) (v (n — 4))dy

—00

Vs +oo .
— % [ o (G- ) a:

v
Vn
Since (jn(z) increases, tj, < @y if and only if (jn(2rn) = (in(tjn) = Bjn. The last inequality can

be written as

N2
[p; ()]~ |R(0) + O (VJ> (vg—i-ajz) > BinV/n/vj.

NG

As vj/y/n — 0, the left hand side tends to C' = h(0)/¢;(v) uniformly in n, since 0]2- are bounded
from above and below implying that 5;,/n/v; < Cp if and only if ¢, < C’m_l/Q, where C7 = v is

a constant. Thus, Lemma S5.5 is proved.

We state the obvious lemma below due to its frequent use in the proofs.
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Lemma S5.6. Let éjk be a hard thresholding estimator of 0, with threshold tj, based on

observation dj, and 1 < u < oco. Then,

El0j, — 05" = 10"1(|djk] < tjn) + Eldjx — 06" I(|djk] > t;n)

< 0" + Eldji — 0] I(|dji| > tjn)-

Lemma S5.7. If p;(z) = Cﬂ()‘{l exp{—|z/a;|°} and tjn/n — oo for j > j1 asn — oo, then

[B10j — dji]"I(|dje| > )] < 7 [tjnoi/ V] exp{=[tjno;/vnl"}.
Proof of Lemma S5.7. It is easily seen that
n
Eldjk — 0jk["I(|djk| > tjn) = vn / | — Ok exp{—n|(z — 1) /o;|° }dz
oV 2m |2|>tjn
otn /2

_ J ’ U 1B
= — y|" exp{—|y|” }dy.
V2m lyoj/v/n+0;k>tn

Since for B > max(0, [(u + 1)/8 — 1]'/#),
o 1
/ |z|“e_|z‘ﬁdz < —Bvte B, (7.11)
B p
we have the following bound:
Eldjr — 0j|"I(|djk] > tjn) < Cotn™"ltjny/n/oj|" ™ exp{—(tjnv/n/o;)}
_ CO';Lniu/Z(Q’u,j log 2)(u+1)/267uj 10g27
by Lemma S5.6 and, for j > j; + 1,
Vbl < A/n2~i0=1pH1/2) < g\ /po— i (r=1/p+1/2) — 4 (7.12)

according to Lemma A.4 in Bochkina and Sapatinas (2006).
Now we prove (7.11).
00 1/B _
/ Zte dy = [x=1/z] = / 274 2y
B 0

Function 2~ 2e~*" increases for = < [3/(u + 2)]'/?, since then

d _ —
Thus, for all < 1/B < [3/(u + 2)]"/?,

00 1/B
_B —u—2 —x—B _ BB _BB
/ L% dZ:/ U 26 T d.’L’gB lBu+2€ B :Bu+1€ B )
B 0
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Thus, Lemma S5.7 is proved.

Lemma S5.8. Let ¢ and h be Student’s t distributions with density (4.2) with p and ~y degrees
of freedom respectively, 0 < v < p, pj(z) = a;lw(aj/aj), 0<cg<o0;<d<oo. Then, ifvj/y/n =0
as n — 00, the threshold t;,, defined by (3.10) asymptotically satisfies

C1, Bin < Co Vf)@,
-1 Vn L/(p+1) VJUJ v \?
tiny/n/oj = (1+o(1)) [ Bj, nV7O']i| ’ < Bin < ('/j%’) ’

()] s ()

for some constants Cy, C7 > 0 depending only on v and p.

Proof of Lemma S5.8. We can obtain the asymptotic expression for the threshold following the
proof of Lemma 4(ii) in Pensky and Sapatinas (2007) under the assumptions of the lemma, that for
some constant Cy > 0, (jn(z) = Cy y\J/UJ F(z) with F(z) = (’y—I—1/]21'2)_(’Y+1)/2(p—|—nxz/ajz)(p+1)/2(1—|—
0(1)) (due to Lemma 2 in Pensky and Sapatinas (2007)), and

cocy (1 + o(1)), ] < o5/ v/m,
F(x) =1 ¢ (vnz/o) 1+ o(1)], o/ Vn < Jal < 1/v,
(Vaz /o)) (via) 7 L+ o(1)], 2| > 1w,

where ¢ = k*t1/2 Since the threshold satisfies Bin = Cntin) = Co2ZF(t;,), we obtain that

5
C, G < ¢,
—1Bjuy/m] (P HD) 8; nf Jr \PT!
fuv/ifo; = (14 0(1)) . [Cat 2] o <5 <o)
71ﬁ‘,n\/ﬁ Vjo; ’Y+1 - /B,n\/ﬁ \/ﬁ P+1
{CO sl () ] ’ %T>C°(w) !

which is the statement of the lemma.



