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This note contains detailed proofs for Theorems 1-6 and Propositions 1-2. Proofs of most

auxiliary statements are also included for completeness. Throughout this note, we use a generic

positive constant C which is not necessarily the same, even within a single equation.

S1. Non-adaptive and adaptive minimax rates of convergence under pointwise lu-risks

(1 ≤ u <∞) in the standard nonparametric regression model.

First we prove Theorem 1 (non-adaptive case).

Proof of Theorem 1.

[Lower bound] R∗,un (f̃ , Br
p,q(A), t0) ≥ Cn−

u(r−1/p)
2(r−1/p)+1 as n→∞ is equivalent to the following: for any

estimator f̃ and any sequence Bn →∞ as n→∞,

lim sup

[
n

u(r−1/p)
2(r−1/p)+1Bn sup

f∈Brp,q(A)
E|f̃(t0)− f(t0)|u

]
=∞. (7.1)

Suppose now that (7.1) does not hold for some estimator f̃ and some sequence Bn such that Bn →∞

and n/ log (Bn)→∞ as n→∞, i.e.,

lim sup

[
n

u(r−1/p)
2(r−1/p)+1Bn sup

f∈Brp,q(A)
E|f̃(t0)− f(t0)|u

]
<∞. (7.2)

Hence, for any f0 ∈ Br
p,q(A

′), A′ < A,

lim sup

[
n

u(r−1/p)
2(r−1/p)+1 Bn E|f̃(t0)− f0(t0)|u

]
<∞.

Thus, Theorem S1.2 yields that, for Bn →∞ and n/ log (Bn)→∞ as n→∞,

lim inf

[(
n/ log (Bn)

) u(r−1/p)
2(r−1/p)+1 sup

f∈Brp,q(A)
E|f̃(t0)− f(t0)|u

]
> 0
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and, hence,

lim sup

[
n

u(r−1/p)
2(r−1/p)+1 sup

f∈Brp,q(A)
E|f̃(t0)− f(t0)|u

]
=∞,

which contradicts the assumption made in (7.2). This completes the proof for the lower bound of

Theorem 1.

[Upper bound] The validity of the upper bounds follows from the following theorem. (Note that

Theorems S1.1 and S1.3 are proved under a slightly more general condition on the error distribu-

tion.)

Theorem S1.1. Assume (S1), (S2) and (S3), 1 ≤ u <∞, and f ∈ Br
pq(A) with 1 ≤ p, q ≤ ∞,

A > 0 and 1/p < r < s. Let ϕj be the pdf of N(0, σ2
j /2), 0 < σ 6 σj 6 σ̄ <∞, and let f̂ be a hard

thresholding wavelet estimator with threshold tjn:

tjn =

 σjn
−1/2 for j = L,L+ 1, . . . , j1,

σjn
−1/2 [log2(2uj)]1/2 for j = j1 + 1, . . . , J − 1,

where j1 = 1
2(r−1/p)+1 log2 n. Then, for any t0 ∈ (0, 1),

Run(f̂ , Br
pq(A), t0) = O

(
n
− u(r−1/p)

2(r−1/p)+1

)
as n→∞.

Proof of Theorem S1.1. It is easily seen that the risk is bounded by

Run(f̂ , Br
p,q(A), t0) ≤

 ∑
k∈KL−1(t0)

2L/2[E(θ̂k − θk)u]1/u||φ||∞

+
∑

k∈KL−1(t0)

2L/2|θ̃k − θk| ||φ||∞

+
J−1∑
j=L

∑
k∈Kj(t0)

2j/2[E(θ̂jk − θjk)u]1/u||ψ||∞

+

J−1∑
j=L

∑
k∈Kj(t0)

2j/2|θ̃jk − θjk| ||ψ||∞

+

∞∑
j=J

∑
k∈Kj(t0)

2j/2|θ̃jk| ||ψ||∞

u
= [Q11 +Q12 +Q21 +Q22 +Q3]u. (7.3)

Term Q11 +Q12 in (7.3) is bounded by

C
∑

k∈KL−1

2L/2[V(θ̂k)]
1/2 + C

∑
k∈KL−1

2L/2|θ̃k − θk| ≤ Cn−1/2σL−1 + Cn−r

= O
(
n−1/2

)
+ o

(
n−(r−1/p)

)
= o

(
n
− (r−1/p)

2(r−1/p)+1

)
,
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due to Lemma A.4 in Bochkina and Sapatinas (2006) and the fact that V(θ̂k) = O(n−1).

On the other hand, term Q3 in (7.3) is bounded by

C
∞∑
j=J

∑
k∈Kj(t0)

2j/2|θ̃jk| ≤ C
∞∑
j=J

2j/22−j(r−1/p+1/2) = O
(

2−J(r−1/p)
)

= O
(
n−(r−1/p)

)
= o

(
n
− (r−1/p)

2(r−1/p)+1

)
,

due to Lemma A.4 in Bochkina and Sapatinas (2006) which also implies that term Q22 in (7.3) is

dominated by C n−(r−1/p)(log n)I(p=∞).

Thus, we have that

[
Run(f̂ , Br

p,q(A), t0)
]1/u

6 Cn
− (r−1/p)

2(r−1/p)+1 + C
J−1∑
j=L

∑
k∈Kj(t0)

2j/2
[
E|θjk − θ̂jk|u

]1/u
. (7.4)

Consider separately the sums for low and high resolution levels, using Lemma A.3 in Bochkina and

Sapatinas (2006) to bound the summand in the first sum and Lemma S5.6 to bound the summand

in the second sum:

[Run(f̂ , Br
pq(A), t0)]1/u 6 Cn−(r−1/p)/(2(r−1/p)+1) + C

j1∑
j=L

2j/2tjn

+ C
J−1∑

j=j1+1

2j/2
∑

k∈Kj(t0)

[E|djk − θjk|uI(|djk| > tjn)]1/u.

The first sum is easy to calculate since, by definition, tjn is independent of j for j 6 j1, and it is

equal to Cn
− (r−1/p)

2(r−1/p)+1 . Since for j > j1 tjn
√
n → ∞, by Lemma A.4 in Bochkina and Sapatinas

(2006) and Lemma S5.7, the second sum is bounded from above by

Cn−1/2
J−1∑

j=j1+1

2j/2j(u+1)/2u2−j + C

J−1∑
j=j1+1

∑
k∈Kj(t0)

2j/2|θjk|

6 Cn−1/2[log n](u+1)/2u2−j1/2 + C
J−1∑

j=j1+1

2−j(r−1/p) = O
(
n
− (r−1/p)

2(r−1/p)+1
)
.

Thus, for any t0 ∈ (0, 1), Run(f̂ , Br
pq(A), t0) 6 Cn

− u(r−1/p)
2(r−1/p)+1 as n→∞. This completes the proof

of Theorem S1.1.

Thus, the proof for the upper bound of Theorem 1 is completed and, hence, Theorem 1 is

proved.

We now prove Theorem 2 (adaptive case). In order to do that, we need some preliminary

results.
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Theorem S1.2. Take (r, p, q) such that r > 1
p , 1 6 p, q,6 ∞, and a sequence Bn such that

Bn → ∞, n/ log (Bn) → ∞ as n → ∞. Let f̃ be an estimator of f based on observations from

the standard nonparametric regression model (2.1). If f0 ∈ Br
p,q(A

′) with 0 < A′ < A satisfying

lim sup

[
n

u(r−1/p)
2(r−1/p)+1 Bn E|f̃(t0)− f0(t0)|u

]
<∞, then

lim inf

[(
n/ log (Bn)

) u(r−1/p)
2(r−1/p)+1 sup

f∈Brp,q(A)
E|f̃(t0)− f(t0)|u

]
> 0.

Proof of Theorem S1.2. Let X be a random variable having either distribution Pθ0 with density

fθ0 or distribution Pθ1 with density fθ1 , with respect to some dominating measure. For any estimator

δ = δ(X) of θ ∈ {θ0, θ1}, its lu-risk (1 ≤ u < ∞) is defined by Ru(δ, θ) = E|δ(X) − θ|u. Denote

by κ(x) = fθ1(x)/fθ0(x) the ratio of the two densities. (κ(x) = ∞ for some x is possible, with the

obvious interpretation κ(x)fθ0(x) = fθ1(x).)

For 1 ≤ u <∞, denote by u∗ the value satisfying 1/u+ 1/u∗ = 1 (i.e., u and u∗ are conjugate

numbers). Let Iu∗ := Iu∗(θ0, θ1) =
[
Eθ0(κ(X))u

∗]1/u∗
, with obvious change for u∗ = ∞ (this is a

measure of distance between the two distributions Pθ0 and Pθ1).

Take fn(t) = γ−1
n g(βn(t− t0)) + f0(t), t ∈ [0, 1], where

1) g is a compactly supported and monotonically decreasing function satisfying (i) g ∈ Br
p,q(A−

A′), (ii) g(x) > 0 for x ∈ (0, 1], g(0) > 0, and (iii) ‖g‖22 > 0 (such a function is easy

to construct, either directly or by using wavelets); denote by b = [ucu‖g‖22]−1 > 0 where

cu = 1/[2(u− 1)] for u > 1 and cu = 1 for u = 1;

2) γn = (n/(b log (Bn)))
(r−1/p)

2(r−1/p)+1 and βn = (n/(b log (Bn)))
1

2(r−1/p)+1 .

Note that 2) above implies that γ2
nβn = n/(b log (Bn)) and γ−1

n β
r−1/p
n = 1. Then, in view of

Lemma 1 in Cai (2003), fn ∈ Br
p,q(A).

Write Pn0 and Pn1 for the probability measures on Rn generated from the standard nonparametric

regression model (2.1) with f = f0 and f = fn, respectively. Since σ2 is assumed known, we take

σ2 = 1 without loss of generality. Then a sufficient statistic for the family of probability measures

{Pn0 ,Pn1} is given by the log likelihood ratio Tn = log(dPn1/dPn0 ) (see, e.g., Brown and Low (1996b)).

Set ρ′n =
∑n

i=1

{
g2(βn(tni−t0))

γ2n

}
, where tni := i/n, i = 0, 1, . . . , n. Then,

Tn ∼

 N(−ρ′n/2, ρ′n) under Pn0
N( ρ′n/2, ρ

′
n) under Pn1 ,
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and κ(x) = ex. Note that, for large n and r > 1/p + 1/2, ρ′n ≈ ρn := n
∫ 1

0
g2(βn(t−t0))

γ2n
dt, where

ρn = n||fn − f0||22 = nγ−2
n β−1

n ||g||22 (by following the arguments of Section 5 in Brown and Low

(1996b)). Now, define ḡ by

ḡ(βn(t− t0)) = g(βn(tni − t0)), tn,i−1 < t ≤ tni, i = 1, 2, . . . , n,

with ḡ(0) = g(0). Then, ρ′n = n
∫ 1

0
ḡ2(βn(t−t0))

γ2n
dt.

Following the arguments in the proof of Theorem 4 in Cai (2003), we can rewrite Iu∗ =

eρ
′
n(u∗−1)/2 = e

ρ′n
2(u−1) for 1 < u∗ < ∞, and for u∗ = ∞, Ĩ∞ = ||κ(x)I(x ≤ ρ′n)||∞ = eρ

′
n . We

can unify the two cases by writing Iu∗ = enγ
−2
n β−1

n /(ub)eµncu , where µn = ρ′n − ρn. Substituting the

values of βn and γn in the definition of g, we get that Iu∗ = B
1/u
n eµncu since nγ−2

n β−1
n /b = log (Bn).

Since µn does not necessarily goes to zero when 1/p < r < 1/p+ 1/2 , we use the assumption

that g is non-negative and decreasing to obtain the inequality that µn 6 0 for r > 1/p, which is

sufficient for our purpose. Indeed, since g is non-negative and decreasing, for t ∈ [tn,i−1, tni], we get

ḡ2(βn(t− t0)) = g2(βn(tni − t0)) 6 g2(βn(t− t0)),

implying that ρ′n 6 ρn (i.e., µn 6 0) and thus that Iu∗ = eρ
′
ncu 6 eρncu = B

1/u
n .

Let now δn = f̃n(t0), θ0 = f0(t0) and θ1 = fn(t0). Note that for sufficiently large n,

∆ = |fn(t0)− f0(t0)| = g(0)γ−1
n .

For some C > 0 and large enough n, Lemma 2(i) in Cai (2003) states that

Ru(δn, θ1) > ∆u(1− uεuIu∗/∆),

where Ru(δn, θ0) 6 εuu; in our case, it is given that εu = C1/un
− (r−1/p)

2(r−1/p)+1B
−1/u
n . Substituting the

value of εu and the upper bound for Iu∗ , we get

Ru(δn, θ1) = E|f̃n(t0)− fn(t0)|u ≥
(
g(0)

γn

)u{
1− u C1/un

(r−1/p)
2(r−1/p)+1B−1/u

n B1/u
n (1 + o(1))γn(g(0))−1

}

=[b g(0)]
u(r−1/p)

2(r−1/p)+1

(
logBn
n

) u(r−1/p)
2(r−1/p)+1

×

×
{

1− u C1/u(b log(Bn))
−(r−1/p)

2(r−1/p)+1 (1 + o(1))(g(0))−1

}

=[b g(0)]
u(r−1/p)

2(r−1/p)+1

(
logBn
n

) u(r−1/p)
2(r−1/p)+1

(1 + o(1)).

This completes the proof of Theorem S1.2.
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We are now ready to prove Theorem 2 (adaptive case).

Proof of Theorem 2

[Lower bound] Consider two Besov classes Bri
pi,qi(Ai) with ri > 1/pi for i = 1, 2. Let 0 < r2−1/p2 <

r1 − 1/p1. Applying Theorem S1.2, it immediately follows that if an estimator f̂n satisfies, as

n→∞,

lim sup

[
nl sup

f∈Br1p1,q1 (A1)

E|f̂n(t0)− f(t0)|u
]
<∞

for some l > u(r2 − 1/p2)/(1 + 2(r2 − 1/p2), then

lim inf

[(
n/ log n

) u(r2−1/p2)
2(r2−1/p2)+1 sup

f∈Br2p2,q2 (A2)

E|f̂n(t0)− f(t0)|u
]
> 0.

This completes the proof for the lower bound of Theorem 2.

[Upper bound] The validity of the upper bound follows from the following theorem.

Theorem S1.3. Assume (S1), (S2) and (S3), 1 ≤ u <∞, and f ∈ Br
pq(A) with 1 ≤ p, q ≤ ∞,

A > 0 and 1/p < r < s. Let ϕj be the pdf of N(0, σ2
j /2), 0 < σ 6 σj 6 σ̄ <∞, and let f̂ be a hard

thresholding wavelet estimator with threshold tjn = σjn
−1/2(uj log 2)1/2 for j = L,L+ 1, . . . , J − 1.

Then, for any t0 ∈ (0, 1),

Run(f̂ , Br
pq(A), t0) = O

( n

log n

)− u(r−1/p)
2(r−1/p)+1

 as n→∞.

Proof of Theorem S1.3. Let j2 be such that 2j2 =
(

n
logn

) 1
2ν+1

. From the proof of Theorem S1.1

it follows that we need to find an upper bound on (7.4) which we consider separately for low and

high resolution levels:

j2∑
j=L

∑
k∈Kj(t0)

2j/2[E(θ̂jk − θjk)u]1/u +

J−1∑
j=j2+1

∑
k∈Kj(t0)

2j/2[E(θ̂jk − θjk)u]1/u = R1 +R2.

By Lemma A.3 in Bochkina and Sapatinas (2006), the first sum is bounded from above by

C

j2∑
j=L

2j/2tjn +O(n−1/22j2/2) = Cn−1/2
j2∑
j=L

2j/2σjj
1/2 +O(n−1/22j2/2)

6 Cn−1/2[log2 n]1/22j2/2 +O(n−1/22j2/2) 6 C

(
n

log n

)−ν/(2ν+1)

.

In the proof of Theorem S1.1, we showed that if tjnn
1/2 →∞ as n→∞,

E|djk − θjk|uI(|djk| > tjn) 6 Cσuj n
−u/2|tjn

√
n/σj |u+1 exp{−(tjn

√
n/σj)

2/2},
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which holds here since for j > j2, tjnn
1/2 > Cj

1/2
2 = C log2

(
n

logn

)
→∞ as n→∞.

Note that since j2 < j1 and tjn n
1/2 → ∞ for j > j2 as n → ∞, we can apply Lemma S5.7 to

obtain an upper bound on the second sum:

C
J−1∑

j=j2+1

2j/2σjn
−1/2|tjn

√
n/σj |1+1/u exp{−(tjn

√
n/σj)

2/2u}

6 Cn−1/2
J−1∑

j=j2+1

2j/2j1/2+1/2u exp{−j log 2/2} 6 Cn−1/2(log n)1/2+1/2u
J−1∑

j=j2+1

1

= C

(
n

log n

)−1/2

(log n)1+1/2u = o

(
n

log n

)−ν/(2ν+1)

.

This completes the proof of Theorem S1.3.

Thus, the proof for the upper bound of Theorem 2 is completed and, hence, Theorem 2 is

proved.

S2. Proof of theorems for non-adaptive Bayes factor wavelet estimators

Set ε1 = 1
2(r−1/p)+1 .

Proof of Theorem 3. Following the proof of Theorem S1.1, we only need to consider (7.4):

R =

J−1∑
j=L

2j/2
∑

k∈Kj(t0)

[
E|θjk − θ̂jk|u

]1/u
= Slow + Shigh,

where Slow represents the sum over indices L 6 j 6 j1 and Shigh represents the sum over j1 < j 6

J − 1. Note that for the low resolution levels

νj/
√
n = C2m1jn−1/2 = C2−m1(j1−j)nm1ε1−1/2 → 0 as n→∞, (7.5)

since m1ε1 − 1/2 = m1−(r−1/p+1/2)
2(r−1/p)+1 6 0. Similarly, for the high resolution levels,

νj/
√
n = C2m2jn−1/2 = C2m2(j−j1)nm2ε1−1/2 →∞ as n→∞, (7.6)

since m2ε1 − 1/2 = m2−(r−1/p+1/2)
2(r−1/p)+1 > 0.

Low resolution levels, L 6 j 6 j1.

We use Lemma A.3 in Bochkina and Sapatinas (2006) to bound Slow from above:

Slow =

j1∑
j=L

2j/2
∑

k∈Kj(t0)

min(tjn, |θjk|) +O(2j1/2n−1/2),

since κu,j =
∫ +∞
−∞ |x|

uϕj(x)dx = cσuj
∫ +∞
−∞ |z|

ue−|z|
β
dz < C σu <∞ (uniformly).
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Since νj/
√
n → 0 due to (7.5) and prior h satisfies the assumptions of Lemma S5.5, we can

apply Lemma S5.5 together with the upper bound for the threshold under power-exponential errors

(Lemma 4(i) in Pensky and Sapatinas (2007)) to obtain the following bound:

Slow 6
j1∑
j=L

2j/2tjn +O(2j1/2n−1/2) 6 n−1/2
j1∑
j=L

2j/2
[
log
(
βjn
√
nν−1

j

)]1/β
+O(2j1/2n−1/2)

6 n−1/2
j1∑
j=L

2j/2
[
log
(
βjn
√
nν−1

j

)]1/β
+O(2j1/2n−1/2) = O

(
n
− r−1/p

2(r−1/p)+1

)
,

since βjn
√
nν−1

j = C2j(a1−m1)nb1+1/2 6 Cnb1+1/2+ε1(a1−m1)+ 6 C under the assumptions of the

theorem. Thus, for the low level sum the rate is optimal.

High resolution levels, j1 + 1 6 j 6 J − 1.

We need to show that the following sum is bounded by Cn−ν/(2ν+1):

Shigh =

J−1∑
j=j1+1

2j/2
∑

k∈Kj(t0)

[
E|θjk − θ̂jk|u

]1/u
.

By Lemma S5.6,

Shigh 6 2
J−1∑

j=j1+1

2j/2
∑

k∈Kj(t0)

[E|θjk − djk|uI(|djk| > tjn)]1/u + 2
J−1∑

j=j1+1

2j/2
∑

k∈Kj(t0)

|θjk|.

Due to Lemma A.4 in Bochkina and Sapatinas (2006), the second sum is bounded by

C

J−1∑
j=j1+1

2j/22−j(r−1/p+1/2) = C
J−1∑

j=j1+1

2−j(r−1/p) = O(n−ν/(2ν+1)) as n→∞.

Note also that νj/
√
n→∞ due to (7.6). Now we consider the first term.

Consider separately 2 cases: β 6 1 and β > 1.

1. β 6 1. In this case λϕ = 0 and, if βjn > 1, by Lemma 2(ii) in Pensky (2006),

ζjn = 1 + o(nν−1
j ) < βjn ∀x,

implying that I(|djk| > tjk) = I(ζjn(djk) > βjn) = 0 and thus the first sum is zero.

Note that βjn > 1 since βjn = C2a2jnb2 > Cnb2+ε1(a2)+ →∞ since b2 + ε1(a2)+ > 0.

2. β > 1. In this case, we bound the summands in the first sum using Lemma S5.7 and Lemma

S5.3:

E|θjk − djk|uI(|djk| > tjn) 6 Cn−u/2[tjn
√
n/σj ]

u+1e−(tjn
√
n/σj)

β

= Cn−u/2[log βjn](u+1)/ββ−1
jn ,
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since βjn →∞ for j > j1 due to b2 + ε1(a2)+ > 0, and thus tjnn
1/2 →∞.

Thus, the second sum in this case is bounded by

C
J−1∑

j=j1+1

2j/2n−1/2[log βjn](u+1)/uββ
−1/u
jn

= Cn−1/2
J−1∑

j=j1+1

2j/2[b2 log n+ a2j log 2](u+1)/uβn−b2/u2−a2j/u

6 Cn−1/2−b2/u[(b2 + ε1(a2)+) log n](u+1)/uβ
J−1∑

j=j1+1

2j(1/2−a2/u).

The last sum is equal to
Cn−(b2+a2)/u[log n](u+1)/uβ, 1/2− a2/u > 0,

Cn−1/2−b2/u[log n]1+(u+1)/uβ, 1/2− a2/u = 0,

Cn−(1−ε1)/2n−(b2+ε1a2)/u[log n](u+1)/uβ, 1/2− a2/u < 0.

Thus, this sum converges to zero at a rate not slower than the optimal if b2 + a2 > u(1− ε1)/2 if a2 6 u/2,

b2 + ε1a2 > 0 if a2 > u/2,

which can be rewritten as b2 + ε1a2 > (u/2− a2)(1− ε1) if a2 6 u/2,

b2 + ε1a2 > 0 if a2 > u/2,

or b2 + ε1a2 > (u/2− a2)+(1− ε1). It is easy to check that this condition implies b2 + ε1(a2)+ > 0

required earlier. This completes the proof of Theorem 3.

Proof of Theorem 4. Following the proof of Theorem S1.1, we only need to consider (7.4) which

we consider separately for low and high resolution levels.

Low resolution levels, L 6 j 6 j1.

Since m1 6 r− 1/p+ 1/2, νj/
√
n→ 0, following the proof for the low levels of Theorem 3, the

sum for the low levels is bounded by the optimal rate plus
∑j1

j=L 2jtjn which achieves the optimal

rate if βjn
√
n/νj 6 C for the considered j (Lemma S5.5), i.e. given

βjn
√
n/νj = n1/2+b12(a1−m1)j 6


Cn1/2+b12(a1−m1)j1 if a1 −m1 > 0,

Cn1/2+b1j1 if a1 −m1 = 0

Cn1/2+b1 if a1 −m1 < 0
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or, equivalently, if 
1/2 + b1 + ε1(a1 −m1) 6 0 if a1 −m1 > 0,

1/2 + b1 < 0 if a1 −m1 = 0

1/2 + b1 6 0 if a1 −m1 < 0.

High resolution levels, j1 + 1 6 j 6 J − 1.

Since ϕj is a heavy tailed density (3.3), by Lemma 2 (ii) in Pensky (2006),

ζjn(x) =
Ij(x)√

nϕj(
√
nx)

= 1 + o(1) < βjn,

since βjn = C2a2jnb2 > Cnb2+ε1(a2)+ →∞ as n→∞ due to b2 + ε1(a2)+ > 0. Thus, I(ζjn(|djk|) >

βjn) = 0 and the second sum is zero. This completes the proof of Theorem 4.

S3. Proof of theorems for adaptive Bayes factor wavelet estimators

To prove adaptive error rates, we use another division of the resolution levels, with the critical

level j2 defined by

j2 =
1

2(r − 1/p) + 1
log2

(
n

log n

)
. (7.7)

Note that this “adaptive” critical level is smaller than then “non-adaptive” critical level j1.

Lemma S3.1. Assume (S1), (S2) and (S3), 1 ≤ u < ∞, and f ∈ Br
pq(A) with 1 ≤ p, q ≤ ∞,

A > 0 and 1/p < r < s. Let ϕj be the pdf of N(0, σ2
j /2), 0 < σ 6 σj 6 σ̄ <∞, and let f̂BF is the

corresponding Bayes Factor estimator. We assume that h is such that ζjn(x) increases for x > 0.

Denote fjn = max(1, νj/
√
n), vjn = βjnfjn

√
n/νj →∞ as n→∞. Then, for any t0 ∈ (0, 1),

[Run(f̂BF , B
r
pq(A), t0)]1/u 6C

(
n

log n

)− (r−1/p)
(2(r−1/p)+1)

(7.8)

+Cn−1/2
j2∑
j=L

2j/2fjn[log(Cϕ,hvjn)]1/2

+Cn−1/2
J−1∑

j=j2+1

2j/2v
−1/u
jn [log vjn](u+1)/2u.

Proof of Lemma S3.1. Following the proof of Theorem S1.1, we only need to consider (7.4), and

using Lemma A.3 in Bochkina and Sapatinas (2006) and Lemma S5.6, we have that

[Run(f̂BF , B
r
pq(A), t0)]1/u 6 Cn−ν/(2ν+1) + C

j2∑
j=L

2j/2tjn

+ C

J−1∑
j=j2+1

2j/2
∑

k∈Kj(t0)

[E|θjk − djk|uI(|djk| > tjn)]1/u .
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By Lemma S5.4, the first sum is bounded by

C

j2∑
j=L

2j/2tjn 6 C

j2∑
j=L

2j/2σjn
−1/2

(
1 +

ν2
j

n

)1/2 [
log(Cϕhβjn

√
1 + n/ν2

j )
]1/2

6 Cn−1/2
j2∑
j=L

2j/2σjfjn
[
log(Cϕhβjnfjn

√
n/νj)

]1/2
.

By Lemma S5.7 and Lemma S5.2, the second sum is bounded by

Cn−1/2
J−1∑

j=j2+1

2j/2[tjnσj/
√
n]1+1/u exp{−[tjnσj/

√
n]2/u}

6 Cn−1/2
J−1∑

j=j2+1

2j/2[log(βjn max(1,
√
n/νj))]

(u+1)/2u[βjn max(1,
√
n/νj)]

−1/u

6 Cn−1/2
J−1∑

j=j2+1

2j/2[log(βjnfjn
√
n/νj)]

(u+1)/2u[βjnfjn
√
n/νj ]

−1/u.

Thus, Lemma S3.1 is proved.

If we bound the logarithmic term in the sums from above, we obtain the following corollary.

Corollary S3.1. Assume that νj and βjn are such that for all j = L,L+1, . . . , J−1, νj 6 c
√
n

and βjn
√
n/νj →∞ as n→∞ such that log(βjn

√
n/νj) 6 B log n for some c, B > 0. Then, under

assumptions of Lemma 1, for any t0 ∈ (0, 1),

[Run(f̂BF , B
r
pq(A), t0)]1/u 6 C

(
n

log n

)− r−1/p
2(r−1/p)+1

+ C

(
n

log n

)−1/2−1/2u J−1∑
j=j2+1

2j/2(βjn/νj)
−1/u.

(7.9)

We are now ready to prove Theorems 5 and 6.

Proof of Theorem 5. By substituting assumption (3) of the theorem into Corollary S3.1, we

obtain the following bound:

[Run(f̂BF , B
r
pq(A), t0)]1/u 6 C

(
n

log n

)− r−1/p
2(r−1/p)+1

+

(
n

log n

)−1/2−1/2u J−1∑
j=j2+1

2j/2n−b/u2−aj/u.



12 NATALIA BOCHKINA AND THEOFANIS SAPATINAS

The latter sum is bounded by

C

(
n

log n

)−1/2

(log n)1/2u


n−b/u−1/2unε1(1/2−a/u), 1/2− a/u < 0

n−b/u−1/2u log n, 1/2− a/u = 0

n−b/u−1/2un(1/2−a/u), 1/2− a/u > 0

= C

(
n

log n

)−1/2

(log n)1/2u


n−b/u−1/2u+ε1(1/2−a/u), a > u/2

n−b/u−1/2u log n, a = u/2

n−b/u−1/2u+1/2−a/u, a < u/2

6 C

(
n

log n

)−1/2

(log n)1/2u+1n−b/u−1/2u+(u/2−a)+/u

6 C

(
n

log n

)−1/2

(log n)1/2u+1 6 C

(
n

log n

)− r−1/p
2(r−1/p)+1

,

due to assumption b+ 1/2− (u/2− a)+ > 0. Thus, Theorem 5 is proved.

Proof of Theorem 6. Following the proof of Theorem S1.1, we only need to consider (7.4), and

using Lemma A.3 in Bochkina and Sapatinas (2006) and Lemma S5.6, we have that

[Run(f̂BF , B
r
pq(A), t0)]1/u 6 Cn−ν/(2ν+1) + C

j2∑
j=L

2j/2tjn

+C

J−1∑
j=j2+1

2j/2
∑

k∈Kj(t0)

[E|θjk − djk|uI(|djk| > tjn)]1/u .

a) Low resolution levels. Since νj/
√
n→ 0 and h is either heavy tailed (3.3) or normal, we can

apply Lemma 4(i) in Pensky and Sapatinas (2007) to bound the first sum by

Cn−1/2
j2∑
j=L

2j/2[log(βjn
√
n/νj)]

1/β 6 Cn−1/2(log n)1/22j2/2 = C

(
n

log n

)−(r−1/p)/(2(r−1/p)+1)

,

since we assume that log(βjn
√
n/νj) 6 B[log n]β/2.

b) High resolution levels. By Lemma S5.7, we have

E|θ̂jk − θjk|uI(|djk| > tjn) 6 Cn−u/2[tjn
√
n/σj ]

u+1e−[tjn
√
n/σj ]

β
,

and by Lemma S5.2, we have ϕj(tjn
√
n) 6 ϕj(0)(βjn

√
n/νj)

−1 since νj/
√
n → 0. Hence, tjn >

Cσjn
−1/2[log(βjn

√
n/νj)]

1/β with βjn
√
n/νj →∞, implying

E|θ̂jk − θjk|uI(|djk| > tjn) 6 Cn−u/2[log(βjn
√
n/νj)]

(u+1)/β[βjn
√
n/νj ]

−1,
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and

J−1∑
j=j2

∑
k∈Kj(t0)

2j/2[E|θ̂jk − θjk|uI(|djk| > tjn)]1/u 6 Cn−1/2−1/2u[log n](u+1)/(2u)
J−1∑
j=j2

2j/2[βjn/νj ]
−1/u.

We have the same sum as in the proof of Theorem 5 but with a different power of the logarithmic

factor. Therefore, under the same assumptions as in Theorem 5, we obtain the optimal rate of

convergence. Hence, Theorem 6 is proved.

S4. Proof of propositions for a priori Besov regularity

Proof of Proposition 1. According to Theorem 3 in Pensky and Sapatinas (2007), we need to

check that

lim
n→∞

J−1∑
j=L

[2j(r+1/2)ν−1
j β

−1/p
jn ]min(p, q) <∞.

Denote κ = min(p, q) ∈ [1,∞), then the sum can be written as

Cn−κb1/p
j1∑
j=L

2κj(r+1/2−m1−a1/p) + Cn−κb2/p
J−1∑

j=j1+1

2κj(r+1/2−m2−a2/p)

= Cn−κb1/p+κ(r+1/2−m1−a1/p)+ [log n]I(r+1/2−1/p−m1−a1/p=0)

+ Cn−κb2/p+κZ(r+1/2−m2−a2/p)[log n]I(r+1/2−1/p−m2−a2/p=0),

where Z = 1 if r+1/2−1/p−m2−a2/p > 0 and Z = 1
2(r−1/p)+1 if r+1/2−1/p−m2−a2/p < 0. This

sum is finite as n→∞ if b1/p− (r+ 1/2−m1−a1/p)+ > 0 and b2/p−Z(r+ 1/2−m2−a2/p) > 0,

the inequalities are strict if r + 1/2−m1 − a1/p = 0 or r + 1/2−m2 − a2/p = 0 respectively.

Proof of Proposition 2. According to Theorem 3 in Pensky and Sapatinas (2007), we need to

check that

lim
n→∞

J−1∑
j=L

[2j(r+1/2)ν−1
j β

−1/p
jn ]min(p, q) <∞.

Denote κ = min(p, q) ∈ [1,∞), then the sum can be written as

Cn−κb/p
J−1∑
j=L

2κj(r+1/2−m−(a+m)/p) = Cn−κb/p+κ(r+1/2−m−(a+m)/p)+ [log n]I(r+1/2−1/p−m−(a+m)/p=0)

which is finite as n → ∞ if b/p − (r + 1/2 −m − (a + m)/p)+ > 0, and the inequality is strict if

r + 1/2−m− (a+m)/p = 0.

S5. Auxiliary lemmas.

Lemma S5.2. If ϕj and h are symmetric unimodal density functions, then,

ϕj(
√
ntjn) 6 β−1

jn min

(
ϕj(0),

h(0)νj√
n

)
.



14 NATALIA BOCHKINA AND THEOFANIS SAPATINAS

Proof of Lemma S5.2. Note that the symmetry and unimodality of ϕj implies that ϕj(x) ≤

ϕj(0) for any x. Therefore, the equation for the threshold tj,n (see expression above (3.11)) can be

rewritten as follows

βj,n = ζj,n(tj,n) =

∫ +∞
−∞
√
nϕj(

√
n(tj,n − x))νjh(νjx)dx

√
nϕj(

√
ntj,n)

≤
∫ +∞
−∞
√
nϕj(0)νjh(νjx)dx
√
nϕj(

√
ntj,n)

=
ϕj(0)

ϕj(
√
ntj,n)

.

Similarly, by symmetry and unimodality of h, we have

βj,n = ζj,n(tj,n) =

∫ +∞
−∞
√
nϕj(

√
nx)νjh(νj(tj,n − x))dx

√
nϕj(

√
ntj,n)

≤
∫ +∞
−∞
√
nϕj(

√
nx)νjh(0)dx

√
nϕj(

√
ntj,n)

=
νjh(0)√

nϕj(
√
ntj,n)

.

Rearranging the terms, we have

ϕj(
√
ntj,n) ≤ min

{
β−1
j,nϕj(0), β−1

j,nh(0)νj/
√
n
}
. (7.10)

Thus, Lemma S5.2 is proved.

The following lemma is an obvious corollary from Lemma S5.2.

Lemma S5.3. If ϕj(x) = cβσ
−1
j e−|x/σj |

β
, β > 0, and h is a symmetric unimodal density, then

√
n tj,n > σj max

{[
log

(
βj,n
√
n

h(0)νj

)]1/β

, [log (βj,n)]1/β
}
.

Lemma S5.4. Take ϕj(x) ∼ N(0, σ2
j /2), ϕj(x)/h(x) 6 Cϕh, and let ζjn(x) be increasing for

x > 0. Then,

tjn 6 σjn
−1/2

(
1 +

ν2
j

n

)1/2
log

Cϕhβjn√1 +
n

ν2
j

1/2

.

Proof of Lemma S5.4. Since ζjn(x) increases for x > 0, ζjn(x) > βjn if and only if x > tjn. We

can find the following lower bound on ζjn(x) using h(x) > C−1
ϕhϕj(x). More precisely,

ζjn(x) = [ϕj(x
√
n)]−1νj

∫ ∞
−∞

ϕj((x− y)
√
n)h(νjy)dy

> C−1
ϕh [ϕj(x

√
n)]−1νj

∫ ∞
−∞

ϕj((x− y)
√
n)ϕj(νjy)dy

= C−1
ϕh

νj√
πσj

∫ ∞
−∞

exp
{
− (n+ ν2

j )y2/σ2
j + 2nxy/σ2

j

}
dy

= C−1
ϕh

νj√
ν2
j + n

exp

{
n2x2

(n+ ν2
j )σ2

j

}
.
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Take x > 0 such that C−1
ϕh

νj√
ν2j+n

exp

{
n2x2

(n+ν2j )σ2
j

}
= βjn. Then,

tjn 6 x =
√
nσj

(
1 +

ν2
j

n

)1/2
log

Cϕhβjn√1 +
n

ν2
j

1/2

.

Thus, Lemma S5.4 is proved.

Lemma S5.5. Let ϕj and h be symmetric unimodal densities, and ϕj have finite variances

σ2
j , 0 < σ ≤ σj ≤ σ̄ <∞, h has a bounded second derivative, and ζjn(x) increases for x > 0. Then,

if νj/
√
n→ 0 as n→∞, βjn

√
n/νj 6 C1 if and only if tjn 6 C0n

−1/2, for some C1, C0 > 0 which

depend on ϕ and h but not on νj or n.

Remark S5.1. If the condition that h has a bounded second derivative is replaced with the con-

ditions that ϕj(x)/h(x) 6 Cϕh and ϕj have bounded second derivatives (uniformly in j), then

βjn
√
n/νj 6 C1 implies that tjn 6 C0n

−1/2.

Proof of Lemma S5.5. Consider the function ζjn(x) at point xn =
√
nv, where v is independent

of n. Then,

ζjn(xn) = [ϕj(
√
nxn)]−1νj

∫ +∞

−∞
ϕj(
√
ny)h(νj(xn − y))dy

= [ϕj(v)]−1 νj√
n

∫ +∞

−∞
ϕj(z)h

(
νj√
n

(v − z)
)
dz

= [ϕj(v)]−1 νj√
n

∫ +∞

−∞
ϕj(z)

[
h(0) +

(
νj√
n

)2

(v − z)2h′′(c(v − z))/2

]
dz

= [ϕj(v)]−1 νj√
n

[
h(0) +O

(
νj√
n

)2

(v2 + σ2
j ).

]

Since ζjn(x) increases, tjn 6 xn if and only if ζjn(xn) > ζjn(tjn) = βjn. The last inequality can

be written as

[ϕj(v)]−1

[
h(0) +O

(
νj√
n

)2

(v2 + σ2
j )

]
> βjn

√
n/νj .

As νj/
√
n → 0, the left hand side tends to C = h(0)/ϕj(v) uniformly in n, since σ2

j are bounded

from above and below implying that βjn
√
n/νj 6 C0 if and only if tjn 6 C1n

−1/2, where C1 = v is

a constant. Thus, Lemma S5.5 is proved.

We state the obvious lemma below due to its frequent use in the proofs.
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Lemma S5.6. Let θ̂jk be a hard thresholding estimator of θjk with threshold tjn based on

observation djk, and 1 6 u <∞. Then,

E|θ̂jk − θjk|u = |θjk|uI(|djk| 6 tjn) + E|djk − θjk|uI(|djk| > tjn)

6 |θjk|u + E|djk − θjk|uI(|djk| > tjn).

Lemma S5.7. If ϕj(x) = Cβσ
−1
j exp{−|x/σj |β} and tjn

√
n→∞ for j > j1 as n→∞, then

[E|θjk − djk|uI(|djk| > tjn)]1/u 6
C

β

[
tjnσj/

√
n
]u+1

exp{−[tjnσj/
√
n]β}.

Proof of Lemma S5.7. It is easily seen that

E|djk − θjk|uI(|djk| > tjn) =

√
n

σj
√

2π

∫
|x|>tjn

|x− θjk|u exp{−n|(x− θjk)/σj |β}dx

=
σuj n

−u/2
√

2π

∫
|yσj/

√
n+θjk|>tjn

|y|u exp{−|y|β}dy.

Since for B > max(0, [(u+ 1)/β − 1]1/β),∫ ∞
B
|z|ue−|z|βdz 6 1

β
Bu+1e−B

β
, (7.11)

we have the following bound:

E|djk − θjk|uI(|djk| > tjn) 6 Cσuj n
−u/2|tjn

√
n/σj |u+1 exp{−(tjn

√
n/σj)

β}

= Cσuj n
−u/2(2uj log 2)(u+1)/2e−uj log 2,

by Lemma S5.6 and, for j ≥ j1 + 1,

√
n|θjk| ≤ A

√
n2−j(r−1/p+1/2) ≤ A

√
n2−j1(r−1/p+1/2) = A (7.12)

according to Lemma A.4 in Bochkina and Sapatinas (2006).

Now we prove (7.11).∫ ∞
B

zue−z
β
dz = [x = 1/z] =

∫ 1/B

0
x−u−2e−x

−β
dx

Function x−u−2e−x
−β

increases for x < [β/(u+ 2)]1/β, since then

d

dx
(x−u−2e−x

−β
) = e−x

−β
x−u−3[−(u+ 2) + βx−β] < 0.

Thus, for all x 6 1/B < [β/(u+ 2)]1/β,∫ ∞
B

zue−z
β
dz =

∫ 1/B

0
x−u−2e−x

−β
dx 6 B−1Bu+2e−B

β
= Bu+1e−B

β
.
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Thus, Lemma S5.7 is proved.

Lemma S5.8. Let ϕ and h be Student’s t distributions with density (4.2) with ρ and γ degrees

of freedom respectively, 0 < γ < ρ, ϕj(x) = σ−1
j ϕ(x/σj), 0 < σ ≤ σj ≤ σ̄ <∞. Then, if νj/

√
n→ 0

as n→∞, the threshold tj,n defined by (3.10) asymptotically satisfies

tjn
√
n/σj = (1 + o(1))


C1, βj,n < C0

νjσj√
n
,[

C−1
0 βj,n

√
n

νjσj

]1/(ρ+1)
, C0

νjσj√
n

6 βj,n 6 C0

( √
n

νjσj

)ρ
,[

C−1
0 βj,n

(
νjσj√
n

)γ]1/(ρ−γ)
, βj,n > C0

( √
n

νjσj

)ρ
,

for some constants C0, C1 > 0 depending only on γ and ρ.

Proof of Lemma S5.8. We can obtain the asymptotic expression for the threshold following the

proof of Lemma 4(ii) in Pensky and Sapatinas (2007) under the assumptions of the lemma, that for

some constant C0 > 0, ζj,n(x) = C0
νjσj√
n
F (x) with F (x) = (γ+ν2

j x
2)−(γ+1)/2(ρ+nx2/σ2

j )
(ρ+1)/2(1+

o(1)) (due to Lemma 2 in Pensky and Sapatinas (2007)), and

F (x) =


cρc
−1
γ (1 + o(1)), |x| < σj/

√
n,

c−1
γ (
√
nx/σj)

ρ+1[1 + o(1)], σj/
√
n 6 |x| 6 1/νj ,

(
√
nx/σj)

ρ+1(νjx)−γ−1[1 + o(1)], |x| > 1/νj ,

where ck = k(k+1)/2. Since the threshold satisfies βj,n = ζj,n(tj,n) = C0
νjσj√
n
F (tj,n), we obtain that

tjn
√
n/σj = (1 + o(1))


C1,

βj,n
√
n

νjσj
< C0,[

C−1
0

βj,n
√
n

νjσj

]1/(ρ+1)
, C0 6 βj,n

√
n

νjσj
6 C0

( √
n

νjσj

)ρ+1
,[

C−1
0

βj,n
√
n

νjσj

(
νjσj√
n

)γ+1
]1/(ρ−γ)

,
βj,n
√
n

νjσj
> C0

( √
n

νjσj

)ρ+1
,

which is the statement of the lemma.


