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1. PROOFS OF THEOREMS 1 AND 2

1-1.  Proof of Theorem 1
Let S be the Hilbert space of Hilbert—Schmidt operators endowed with the inner product
(U1, W2)s = > 72 (Pi(e;), Pa(ey)) for Uy, ¥y € S, where {e; : j =1,2,...} is an orthonor-
mal basis in . Notice that (Z* €S (1 =1,2). Since

le inﬂ-O (n; 1/2)’ ”2_1/22()(* yzni)ZOP(l), i=1,2,
7j=1

we get 10

nf Z "] 71 n'” ® (X::] _Ylvn’b) + OP(TL_I)7 1= 172;
(2

where the random variables (X Y= Xin,) ® (X *. — X, n,) are, conditional on X, indepen-
dent and identically distributed. By a central 11m1t theorem for triangular arrays of indepen-
dent and identically distributed S-valued random variables (see, e.g., Politis & Romano (1992,

Theorem 4.2)), we get, conditionally on X, that nl/ 2(C *_C ~') converges weakly to a Gaus-
sian random element ¢/ in S with mean zero and covariance operator B = 60B; + (1 —6)Bz as s
n; — oo. Here, B; is the covariance operator of the limiting Gaussian random element U; to

. /2,7
which n;’“(C; — C;) converges weakly as n; — oo.

By the independence of the bootstrap random samples between the two populations, we have,
conditional on Xy,

Ty = N|C} - G313 2
= N(C; = Cn,Cf — Cn)s + N(C* — Cn\C5 — Cn)s

= € - CwlE + (s - Ew)l3:

Hence, taking into account the above results and that n1 /N — 6, we have that N HCl 52 1%
converges weakly to >/, )\ZZZ as ny,ny — oo, where \; (I > 1) are the eigenvalues of the op-
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erator B = 0B + (1 —6)"'Band Z; (I > 1) are independent standard (real-valued) Gaussian
distributed random variables. Since 31 = Bs, the assertion follows.

1-2.  Proof of Theorem 2
Define

Zi ) = [ 2 SO (0~ K)oy (X (0 - X0}, e
j=1 j=1

and
n;
Z5 0 =0 Y (X)) - Xn()), tel, i=1,2
j=1

Notice that, conditionally on Xy, th n, (t) and Z;f n, (t) are independent, have covariance oper-

ators C; and Ca, respectively, and X 1+ ;(t) and X 2+ ;(t) have the same mean function Xn(t). By
a central limit theorem for triangular arrays of independent and identically distributed H-valued
random variables (see, e.g., Politis & Romano (1992, Theorem 4.2)), it follows that, conditionally
on Xy, Z ;rnl converges weakly to a Gaussian random element ¢/; with mean zero and covariance
operator C; as n; — oo.

By the independence of fo n, and Z + . we have, conditionally on X,

2,n2°
St =" [ (X, () - X 1))
N T ’ ’
ning 1 & n — 1 & N _ 2
= — X () —Xnit)} — — X (t)— Xn(t dt
N7, Ly 0 - Fvo) - 300 - Ko

2
_ /I [y N1z, (1)~ PNV, )

from which, and taking into account that n; /N — 6, we have that S]J\r, converges weakly to
J;T%(t)dt as n1,ng — oc. Thus, the assertion follows.

2. ADDITIONAL SIMULATION RESULTS
2-1. THE EFFECT OF INCREASING THE NUMBER OF PROJECTIONS

We present in Tables I and II additional empirical size and power for 7, , for testing the
null hypothesis of equality of two covariance operators, and forS]gylj)V and SSJ)\,, for testing the
null hypothesis of equality of two mean functions, using p = 3, 6 and 8 functional principal
components. We also illustrate in Figure I the quality of the asymptotic X]%(p +1)/2 approximation
of the distribution of the test statistic 7}, ; for p = 2 and p = 6. For this, we estimate the exact
distribution of 7}, y under the null by generating 2000 replications of the functional data Xy
using the simulation set-up of Section 3.1 of the paper, for sample sizes n; = ny = 25. We then
compare the kernel density estimate of this exact distribution, obtained using a Gaussian kernel
with bandwidth equal to 0.45 (p = 2) and 1.5 (p = 6), with the corresponding asymptotic X% and
X3, distributions. The chi-square approximation of the distribution of T}, N is getting worse as
the truncation parameter p increases. In particular, it overestimates the exact density in the right
tail. This overestimation explains why 7}, 5 using chi-square critical values leads to rejection
rates that are below the desired nominal size.



n1:n2:25 n1:n2:50
v Test | a=1% 5% 10% a=1% 5% 10%
1.0 T3 N 0 1.4 4.3 0 1.1 3.5
TN 0 0.1 1.4 0 1.6 5.4
T3 N 0 0 0 0 0.8 34
Tj\} 0.3 2.5 8.2 0.6 3.2 7.6
1.2 T3 N 0.1 1.8 4.6 0.3 1.8 5.5
TN 0 0.1 1.6 0.1 0.8 4.3
T8,N 0 0 0 0.1 1.0 1.7
T]{; 0.5 50 14.7 0.8 9.8 23.1
1.4 T3 n 0 07 29 0 3.0 108
T6,N 0 02 1.2 0 06 28
T8,N 0 0 0 0 03 21
TN 1.6 16.8 36.8 12.8 46.1 67.6
1.6 T3n 0 06 1.8 0 59 223
TN 0 0 1.4 0 06 20
T3 N 0 0 0 0 04 1.3
TN 47 338 61.2 370 79.6 903
1.8 T3 n 0.1 0.5 2.6 0.6 16.7 48.7
TN 0 0 06 0 0 1.0
T3 N 0 0 0 0 0 09
TN 104 557 823 61.2 91.5 96.6
20 T3 n 0 0.5 3.0 1.0 424 80.8
TN 0 0.1 04 0 0.1 1.2
T3 N 0 0 0 0 0 0.3
TN 17.7 66.6 89.2 742 9377 97.7

Table 1. Empirical size and power (%) of T, N (p =3, 6, 8) and T}, for the equality of two
covariance operators.

2:2.  LOOKING AT DEVIATIONS IN ONE DIRECTION
We investigate the empirical size and power behaviour of the tests T, y and Ty, when the
difference between the covariance operators in the two populations is only along one eigendi-
rection. For this, we modified the simulation set-up of Section 3.1 in the paper, and generated
non-Gaussian curves X7 and X5, via

10
Xi(t) =Y {22k Psin(rkt)Vig + k7% cos(2mkt) Wy i}, t €T,

k=1
and
10
Xo(t) = w22k sin(wkt) Vg + k12 cos(2mkt) Wik}, teET,
k=1
where V; and W; . (i = 1,2,k = 1,2,...,10) are independent ¢5-distributed random variables,

and v, = vI(k =r) forr € {1, 3,5} and selected values of .

The results are summarized in Table III. The test based on Ty, has, overall, a better size be-
haviour than that based on T}, 5. The test based on 7'y has also a better power performance even
for large values of r. The reason for this behaviour lies, probably, in the poor chi-square approx-
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Fig. I. Density estimates, 7}, n: sample sizes n1 = ng =
25, for p = 2 (left) and p = 6 (right). Estimated exact den-
sities (dashed lines), and X% and 3, densities (solid lines).

imation of the distribution of 7}, 5 under the null and the fact that this approximation becomes
worse for larger values of p.

2-3. BOOTSTRAP VERSUS ASYMPTOTIC FOR THE SAME PROJECTION-BASED TEST

We additionally demonstrate the benefits of the bootstrap approximation versus the asymp-
totic approximation for the same projection-based test statistics for testing the null hypothesis of
equality of two covariance operators. For this, we compare the empirical size and power of T},
and T;’ ~ applied using critical values obtained from the asymptotic distribution and from the
bootstrap approximation, respectively. The asymptotic distribution of 7}, 5 for the non-Gaussian
case has been derived in Fremdt er al. (2012), while a theoretical justification of using 7'} \; has
been given in Paparoditis & Sapatinas (2015).

Hence, we adopted the simulation setup of Fremdt et al. (2012) and generated non-Gaussian
curves X7 and X, via

Xi(t) = Asin(nt) + Bsin(2nt) + Csin(4nt), teZ, i€ {1,2}, (1)

where A = 7Y7, B = 3Ys, C' = Y3 with Y7, Y5 and Y3 being independent ¢5-distributed random
variables. All curves were simulated at 500 equidistant points in the unit interval Z, and trans-
formed into functional objects using the Fourier basis with 49 basis functions. For each data gen-
erating process, we considered 2000 replications, for different sample sizes and the three most
common nominal levels .. All bootstrap calculations were based on 1000 bootstrap replications.

We present in Table IV empirical size results for T}, 5 and T; N> using p = 2 and 3 functional
principal components. It is evident that 77 ; have good size behavior and do not suffer from the
under-rejection problems of T}, x. Table V shows empirical power results for 15 y and T: 2* N For
this, the curves in the first sample were generated according to (1) while the curves in the second
sample were generated according to a scaled version, i.e., Xo(t) = 7X1(¢), t € Z, for selected
values of the scaling parameter . As Table V shows, T 5, has higher power than 75 y. The
lower power of 75  is due to the overestimation of the right—tail of the true density, see Figures
6.1 and 6.2 in Paparoditis & Sapatinas (2015). Notice that, while this overestimation leads to a
conservative test under the null, it leads at the same time to a loss of power under the alternative.
As our empirical evidence shows, the tests based on bootstrap approximations not only have
better size behavior under the null but they also have higher power under the alternative.



010
1

0.05
1

0.00
1

Fig. II. 10 randomly selected smoothed curves of short-

lived (left panel) and 10 randomly selected smoothed

curves of long-lived flies (right panel). Top: absolute

curves; x-axis: days rescaled on [0,1], y-axis: number of

eggs laid. Bottom: relative curves; x-axis: days rescaled on

[0,1], y-axis: number of eggs relative to the eggs laid in the
fly’s lifetime.

2-4. MEDITERRANEAN FRUIT FLIES

In our analysis, we consider N = 534 egg-laying curves of medflies who lived at least 43
days, but, as in, e.g., Horvith & Kokoszka (2012, Chapter 5) and Fremdt et al. (2013), we only
consider the egg-laying activities on the first 30 days. Two versions of these egg-laying curves
are considered and are scaled such that the corresponding curves in either version are defined on
the interval Z = [0, 1]. The curves in version 1 are denoted by X;(¢) and represent the absolute
counts of eggs laid by fly ¢ on day |30¢]. The curves in version 2 are denoted by Y;(t) and
represent the counts of eggs laid by fly 7 on day |30t relative to the total number of eggs laid in
the lifetime of fly <. Furthermore, the 534 flies are classified into short-lived flies, those who died
before the end of the 43rd day after birth, and long-lived flies, those who lived 44 days or longer.
In this particular data set analyzed, there are n; = 256 short-lived flies and ng = 278 long-
lived flies. Based on the above classification, we consider two samples. Sample 1 represents the
absolute egg-laying curves {X;(t): t € Z, i =1,2,...,256} or the relative egg-laid curves
{Y1,(¢): teZ, i=1,2,...,256} of the short-lived flies. Sample 2 represents the absolute
egg-laying curves {Xo;(t) : t € Z, i = 1,2,...,278} or the relative egg-laid curves {Y2;(t) :
teZ,i=1,2,...,278} of the long-lived flies; see Figure II.
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ny =mno = 25 n1 = no = 50
5 Test |a=1% 5% 10% a=1% 5% 10%
0.0 S5 0.7 33 72 06 45 85
S 0.7 34 66 09 43 87
SE 20 75 134 14 59 112
SN 03 44 98 08 51 84
SN 37 110 174 22 82 131
SO 08 47 106 1.0 45 103
St 12 58 118 0.7 44 85
02 S 13 59 121 26 89 169
SN 18 62 121 24 99 170
Ss 34 100 1638 44 126 210
SN 25 7.6 140 37 114 203
SN 50 134 210 43 129 206
S 18 72 148 3.5 127 191
St 24 88 158 40 130 206
0.4 S 64 152 236 147 337 46.1
S 50 145 230 126 31.1 429
SEN 88 227 320 198 392 53.0
SN 46 190 298 176 397 523
S| 127 257 353 189 380 504
SO 63 192 304 19.1 389 514
St 57 206 320 182 406 54.0
0.6 Sy% 170 348 470 477 676 78.7
SO 147 317 457 431 665 783
Ssv | 256 455 576 522 742 820
SN 19.8 440 557 533 756 828
SN 299 49.1 60.2 509 749 845
S| 203 412 550 514 738 819
St 216 448 593 542 779 8638
08 Sy | 378 599 722 76.6 89.5 93.7
S| 346 584 695 731 892 937
S| 484 700 793 87.0 957 97.8
S| 430 670 796 849 96.6 98.7
S| 526 727 804 856 940 972
SO 442 702 80.4 855 954 982
St 473 712 813 86.1 96.1 982
L0 SN | 580 761 835 942 985 99.4
S| 550 762 84 93.5 985 99.6
Ss 726 874 93.1 98.0 99.8 100
SO | 683 860 933 98.7 99.8 100
SN | 774 898 942 97.8 99.4 99.9
SO | 744 899 945 97.9 99.7 99.8
St 737 907 952 98.0 99.5 99.7

Table II. Empirical size and power (%) of S;(J,IJ)V’ S;’QJ)V (p =3, 6, 8) and S]J{[ for the equality of
two mean functions.



niy :’I’L2:25

n1:n2:50

r v Test | a=1% a=5% a=10% a=1% a=5% a=10%
I 00 Ton 0 2.1 5.9 0.2 1.8 5.1
T3 N 0 1.6 6.5 0.5 1.7 4.9

Ts. N 0 0.1 2.9 0.1 2.1 4.4

Ty 0.2 1.9 5.7 0.4 2.3 6.8

1.6 Ty N 0.2 2.0 6.9 0.7 10.6 28.0

T3 N 0.2 3.8 10.5 2.0 11.6 23.7

TN 0 0.4 2.8 0.1 6.0 13.8

TN 3.6 25.8 48.1 23.3 58.5 74.7

20 Trn 0.1 2.6 12.6 3.3 39.8 68.2

T3 N 0.5 6.1 18.0 1.5 9.4 21.6

T N 0 7.0 8.0 1.4 14.5 28.6

TN 16.9 55.7 74.0 59.8 87.5 93.6

3 00 Ton 0 1.6 4.7 0.4 1.9 5.1
VERY 0 1.6 3.9 0.2 2.2 6.6

T N 0 0.3 13.0 0 1.3 4.3

Ty 0 1.9 6.4 0.2 2.4 6.3

1.6 Ton 0.2 2.7 7.2 0.7 1.9 5.1

T3 N 0 2.6 7.1 0.2 4.8 11.8

TN 0 0.4 2.5 0.1 33 8.9

TN 0.1 2.8 12.6 0.8 9.4 22.5

20 Trn 0.5 5.5 13.3 3.0 18.6 34.0

T3 N 0.2 3.5 10.8 2.4 14.3 26.3

TN 0 0.5 4.4 0.6 9.0 19.6

TN 1.4 14.3 31.5 9.3 36.0 57.5

5 00 Thn 0 1.8 4.0 0.1 1.9 4.9
T3 N 0 1.2 3.7 0.2 1.6 5.3

TN 0 0.1 1.4 0 1.3 4.0

TN 0 1.8 5.6 0.2 2.0 5.7

1.6 Th N 0 1.6 4.9 0.3 4.0 7.9

T3 n 0.1 2.0 6.0 0.3 3.9 8.9

Ts. N 0 0.1 2.1 0.2 2.7 7.8

Ty 0.1 2.6 9.9 0.3 4.0 11.2

20 Ton 04 34 8.7 2.2 9.0 21.1

T3 N 0.2 2.2 8.2 1.5 114 22.3

TN 0 0.4 2.4 0.4 5.0 15.6

Tx 0.2 5.7 17.1 2.3 11.5 28.5

Table III. Empirical size and power (%) of T, n (p = 2,3,6) and T3, for the equality of two
covariance operators, when the difference between the covariance operators in the two popula-
tions is only along the k eigendirection (k = 1,3,5).




ni ng Test |a=1% a=5% a=10%
25 25 Thn 0.2 11 3.9
5y 0.8 4.9 10.5
25 25 Thy 0 1.0 3.5
Ty 0.6 45 9.7
50 50 Thn 0 1.9 5.3
T o 1.0 43 8.3
50 50 Ty 02 1.2 5.1
T; y 0.7 5.3 9.4
100 100 Ty 0 1.9 42
Ty 0.4 4.6 10.0
100 100 Ty 0.5 1.9 45
T o 0.6 5.4 9.4

Table IV. Empirical size (%) of T, Ny and T; ~N (P = 2,3) for the equality of two covariance
functions.

n1:n2:25 ’I’L1:TLQ:50
v Test | a=1% a=5% a=10% a=1% a=5% a=10%
20 Thn 0 4.3 21.5 7.6 61.3 85.7
TQ*,N 0.8 19.1 447 39.6 83.0 94.1
22 Thn 0 6.1 32.1 19.7 717.6 93.3
T n 23 33.0 59.7 69.7 93.9 98.2
24 Tohn 0 134 44.2 359 90.3 97.8
TQ*,N 4.5 46.3 73.2 81.9 97.7 99.1
26 Thy 0 16.4 53.3 50.1 94.6 98.9
TQ*,N 8.4 59.5 83.8 90.1 99.2 99.6
28 Thn 0 23.1 66.1 65.5 98.1 99.6
TZ*,N 12.5 66.9 90.7 94.6 99.1 99.8
30 Thn 0 31.6 75.1 74.5 98.7 99.7
T3 v 18.8 75.5 90.6 96.7 100 100

Table V. Empirical power (%) of T, n and T. 2* N Jor the equality of two covariance functions.
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