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1. PROOFS OF THEOREMS 1 AND 2
1·1. Proof of Theorem 1

Let S be the Hilbert space of Hilbert–Schmidt operators endowed with the inner product
〈Ψ1,Ψ2〉S =

∑∞
j=1〈Ψ1(ej),Ψ2(ej)〉 for Ψ1, Ψ2 ∈ S, where {ej : j = 1, 2, . . .} is an orthonor-

mal basis inH. Notice that Ĉ∗i ∈ S (i = 1, 2). Since

X
∗
i,ni

= Xi,ni +OP (n
−1/2
i ), n

−1/2
i

ni∑
j=1

(X∗i,j −X
∗
i,ni

) = OP (1), i = 1, 2,

we get 10

Ĉ∗i =
1

ni

ni∑
j=1

(X∗i,j −X
∗
i,ni

)⊗ (X∗i,j −X
∗
i,ni

)

=
1

ni

ni∑
j=1

(X∗i,j −Xi,ni)⊗ (X∗i,j −Xi,ni) +OP (n−1), i = 1, 2,

where the random variables (X∗i,j −Xi,ni)⊗ (X∗i,j −Xi,ni) are, conditional on XN , indepen-
dent and identically distributed. By a central limit theorem for triangular arrays of indepen-
dent and identically distributed S-valued random variables (see, e.g., Politis & Romano (1992,
Theorem 4.2)), we get, conditionally on XN , that n1/2i (Ĉ∗i − ĈN ) converges weakly to a Gaus-
sian random element U in S with mean zero and covariance operator B = θB1 + (1− θ)B2 as 15

ni →∞. Here, Bi is the covariance operator of the limiting Gaussian random element Ui to
which n1/2i (Ĉi − Ci) converges weakly as ni →∞.

By the independence of the bootstrap random samples between the two populations, we have,
conditional on XN ,

T ∗N = N‖Ĉ∗1 − Ĉ∗2‖2S 20

= N〈Ĉ∗1 − ĈN , Ĉ∗1 − ĈN 〉S +N〈Ĉ∗2 − ĈN , Ĉ∗2 − ĈN 〉S

=
N

n1
‖n1/21 (Ĉ∗1 − ĈN )‖2S +

N

n2
‖n1/22 (Ĉ∗2 − ĈN )‖2S .

Hence, taking into account the above results and that n1/N → θ, we have that N‖Ĉ∗1 − Ĉ∗2‖2S
converges weakly to

∑∞
l=1 λ̃lZ

2
l as n1, n2 →∞, where λ̃l (l ≥ 1) are the eigenvalues of the op-
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erator B̃ = θ−1B + (1− θ)−1B and Zl (l ≥ 1) are independent standard (real-valued) Gaussian25

distributed random variables. Since B1 = B2, the assertion follows.

1·2. Proof of Theorem 2
Define

Z+
n1,n2

(t) =
[
n
−1/2
1

n1∑
j=1

{X+
1,j(t)−XN (t)}, n−1/22

n2∑
j=1

{X+
2,j(t)−XN (t)}

]
, t ∈ I,

and

Z+
i,ni

(t) = n
−1/2
i

ni∑
j=1

{X+
i,j(t)−XN (t)}, t ∈ I, i = 1, 2.

Notice that, conditionally on XN , Z+
1,n1

(t) and Z+
2,n2

(t) are independent, have covariance oper-
ators Ĉ1 and Ĉ2, respectively, and X+

1,j(t) and X+
2,j(t) have the same mean function XN (t). By

a central limit theorem for triangular arrays of independent and identically distributed H-valued30

random variables (see, e.g., Politis & Romano (1992, Theorem 4.2)), it follows that, conditionally
onXN , Z+

i,ni
converges weakly to a Gaussian random element Ui with mean zero and covariance

operator Ci as ni →∞.
By the independence of Z+

1,n1
and Z+

2,n2
, we have, conditionally on XN ,

S+
N =

n1n2
N

∫
I
{X+

1,n1
(t)−X+

2,n2
(t)}2dt35

=
n1n2
N

∫
I

[ 1

n1

n1∑
t=1

{X+
1,j(t)−XN (t)} − 1

n2

n2∑
t=1

{X+
2,j(t)−XN (t)}

]2
dt

=

∫
I

{
n
1/2
2 N−1/2Z+

1,n1
(t)− n1/21 N−1/2Z+

2,n2
(t)

}2
dt,

from which, and taking into account that n1/N → θ, we have that S+
N converges weakly to∫

I Γ2(t)dt as n1, n2 →∞. Thus, the assertion follows.

2. ADDITIONAL SIMULATION RESULTS40

2·1. THE EFFECT OF INCREASING THE NUMBER OF PROJECTIONS

We present in Tables I and II additional empirical size and power for Tp,N , for testing the
null hypothesis of equality of two covariance operators, and forS(1)

p,N and S(2)
p,N , for testing the

null hypothesis of equality of two mean functions, using p = 3, 6 and 8 functional principal
components. We also illustrate in Figure I the quality of the asymptotic χ2

p(p+1)/2 approximation45

of the distribution of the test statistic Tp,N for p = 2 and p = 6. For this, we estimate the exact
distribution of Tp,N under the null by generating 2000 replications of the functional data XN

using the simulation set-up of Section 3.1 of the paper, for sample sizes n1 = n2 = 25. We then
compare the kernel density estimate of this exact distribution, obtained using a Gaussian kernel
with bandwidth equal to 0.45 (p = 2) and 1.5 (p = 6), with the corresponding asymptotic χ2

3 and50

χ2
21 distributions. The chi-square approximation of the distribution of Tp,N is getting worse as

the truncation parameter p increases. In particular, it overestimates the exact density in the right
tail. This overestimation explains why Tp,N using chi-square critical values leads to rejection
rates that are below the desired nominal size.
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n1 = n2 = 25 n1 = n2 = 50
γ Test α = 1% 5% 10% α = 1% 5% 10%

1.0 T3,N 0 1.4 4.3 0 1.1 3.5
T6,N 0 0.1 1.4 0 1.6 5.4
T8,N 0 0 0 0 0.8 3.4
T ∗N 0.3 2.5 8.2 0.6 3.2 7.6

1.2 T3,N 0.1 1.8 4.6 0.3 1.8 5.5
T6,N 0 0.1 1.6 0.1 0.8 4.3
T8,N 0 0 0 0.1 1.0 1.7
T ∗N 0.5 5.0 14.7 0.8 9.8 23.1

1.4 T3,N 0 0.7 2.9 0 3.0 10.8
T6,N 0 0.2 1.2 0 0.6 2.8
T8,N 0 0 0 0 0.3 2.1
T ∗N 1.6 16.8 36.8 12.8 46.1 67.6

1.6 T3,N 0 0.6 1.8 0 5.9 22.3
T6,N 0 0 1.4 0 0.6 2.0
T8,N 0 0 0 0 0.4 1.3
T ∗N 4.7 33.8 61.2 37.0 79.6 90.3

1.8 T3,N 0.1 0.5 2.6 0.6 16.7 48.7
T6,N 0 0 0.6 0 0 1.0
T8,N 0 0 0 0 0 0.9
T ∗N 10.4 55.7 82.3 61.2 91.5 96.6

2.0 T3,N 0 0.5 3.0 1.0 42.4 80.8
T6,N 0 0.1 0.4 0 0.1 1.2
T8,N 0 0 0 0 0 0.3
T ∗N 17.7 66.6 89.2 74.2 93.7 97.7

Table I. Empirical size and power (%) of Tp,N (p =3, 6, 8) and T ∗N for the equality of two
covariance operators.

2·2. LOOKING AT DEVIATIONS IN ONE DIRECTION 55

We investigate the empirical size and power behaviour of the tests Tp,N and T ∗N when the
difference between the covariance operators in the two populations is only along one eigendi-
rection. For this, we modified the simulation set-up of Section 3.1 in the paper, and generated
non-Gaussian curves X1 and X2, via

X1(t) =

10∑
k=1

{21/2k−1/2 sin(πkt)V1,k + k−1/2 cos(2πkt)W1,k}, t ∈ I,

and

X2(t) =

10∑
k=1

γk{21/2k−1/2 sin(πkt)V1,k + k−1/2 cos(2πkt)W1,k}, t ∈ I,

where Vi,k andWi,k (i = 1, 2, k = 1, 2, . . . , 10) are independent t5-distributed random variables,
and γk = γ I(k = r) for r ∈ {1, 3, 5} and selected values of γ.

The results are summarized in Table III. The test based on T ∗N has, overall, a better size be-
haviour than that based on Tp,N . The test based on T ∗N has also a better power performance even
for large values of r. The reason for this behaviour lies, probably, in the poor chi-square approx- 60
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Fig. I. Density estimates, Tp,N : sample sizes n1 = n2 =
25, for p = 2 (left) and p = 6 (right). Estimated exact den-
sities (dashed lines), and χ2

3 and χ2
21 densities (solid lines).

imation of the distribution of Tp,N under the null and the fact that this approximation becomes
worse for larger values of p.

2·3. BOOTSTRAP VERSUS ASYMPTOTIC FOR THE SAME PROJECTION-BASED TEST

We additionally demonstrate the benefits of the bootstrap approximation versus the asymp-
totic approximation for the same projection-based test statistics for testing the null hypothesis of65

equality of two covariance operators. For this, we compare the empirical size and power of Tp,N
and T ∗p,N applied using critical values obtained from the asymptotic distribution and from the
bootstrap approximation, respectively. The asymptotic distribution of Tp,N for the non-Gaussian
case has been derived in Fremdt et al. (2012), while a theoretical justification of using T ∗p,N has
been given in Paparoditis & Sapatinas (2015).70

Hence, we adopted the simulation setup of Fremdt et al. (2012) and generated non-Gaussian
curves X1 and X2, via

Xi(t) = A sin(πt) +B sin(2πt) + C sin(4πt), t ∈ I, i ∈ {1, 2}, (1)

where A = 7Y1, B = 3Y2, C = Y3 with Y1, Y2 and Y3 being independent t5-distributed random
variables. All curves were simulated at 500 equidistant points in the unit interval I, and trans-
formed into functional objects using the Fourier basis with 49 basis functions. For each data gen-75

erating process, we considered 2000 replications, for different sample sizes and the three most
common nominal levels α. All bootstrap calculations were based on 1000 bootstrap replications.

We present in Table IV empirical size results for Tp,N and T ∗p,N , using p = 2 and 3 functional
principal components. It is evident that T ∗p,N have good size behavior and do not suffer from the
under-rejection problems of Tp,N . Table V shows empirical power results for T2,N and T ∗2,N . For80

this, the curves in the first sample were generated according to (1) while the curves in the second
sample were generated according to a scaled version, i.e., X2(t) = γX1(t), t ∈ I, for selected
values of the scaling parameter γ. As Table V shows, T ∗2,N has higher power than T2,N . The
lower power of T2,N is due to the overestimation of the right-tail of the true density, see Figures
6.1 and 6.2 in Paparoditis & Sapatinas (2015). Notice that, while this overestimation leads to a85

conservative test under the null, it leads at the same time to a loss of power under the alternative.
As our empirical evidence shows, the tests based on bootstrap approximations not only have
better size behavior under the null but they also have higher power under the alternative.
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Fig. II. 10 randomly selected smoothed curves of short-
lived (left panel) and 10 randomly selected smoothed
curves of long-lived flies (right panel). Top: absolute
curves; x-axis: days rescaled on [0,1], y-axis: number of
eggs laid. Bottom: relative curves; x-axis: days rescaled on
[0,1], y-axis: number of eggs relative to the eggs laid in the

fly’s lifetime.

2·4. MEDITERRANEAN FRUIT FLIES

In our analysis, we consider N = 534 egg-laying curves of medflies who lived at least 43 90

days, but, as in, e.g., Horváth & Kokoszka (2012, Chapter 5) and Fremdt et al. (2013), we only
consider the egg-laying activities on the first 30 days. Two versions of these egg-laying curves
are considered and are scaled such that the corresponding curves in either version are defined on
the interval I = [0, 1]. The curves in version 1 are denoted by Xi(t) and represent the absolute
counts of eggs laid by fly i on day b30tc. The curves in version 2 are denoted by Yi(t) and 95

represent the counts of eggs laid by fly i on day b30tc relative to the total number of eggs laid in
the lifetime of fly i. Furthermore, the 534 flies are classified into short-lived flies, those who died
before the end of the 43rd day after birth, and long-lived flies, those who lived 44 days or longer.
In this particular data set analyzed, there are n1 = 256 short-lived flies and n2 = 278 long-
lived flies. Based on the above classification, we consider two samples. Sample 1 represents the 100

absolute egg-laying curves {X1,i(t) : t ∈ I, i = 1, 2, . . . , 256} or the relative egg-laid curves
{Y1,i(t) : t ∈ I, i = 1, 2, . . . , 256} of the short-lived flies. Sample 2 represents the absolute
egg-laying curves {X2,i(t) : t ∈ I, i = 1, 2, . . . , 278} or the relative egg-laid curves {Y2,i(t) :
t ∈ I, i = 1, 2, . . . , 278} of the long-lived flies; see Figure II.
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n1 = n2 = 25 n1 = n2 = 50
δ Test α = 1% 5% 10% α = 1% 5% 10%

0.0 S
(1)
3,N 0.7 3.3 7.2 0.6 4.5 8.5

S
(2)
3,N 0.7 3.4 6.6 0.9 4.3 8.7

S
(1)
6,N 2.0 7.5 13.4 1.4 5.9 11.2

S
(2)
6,N 0.3 4.4 9.8 0.8 5.1 8.4

S
(1)
8,N 3.7 11.0 17.4 2.2 8.2 13.1

S
(2)
8,N 0.8 4.7 10.6 1.0 4.5 10.3
S+
N 1.2 5.8 11.8 0.7 4.4 8.5

0.2 S
(1)
3,N 1.3 5.9 12.1 2.6 8.9 16.9

S
(2)
3,N 1.8 6.2 12.1 2.4 9.9 17.0

S
(1)
6,N 3.4 10.0 16.8 4.4 12.6 21.0

S
(2)
6,N 2.5 7.6 14.0 3.7 11.4 20.3

S
(1)
8,N 5.0 13.4 21.0 4.3 12.9 20.6

S
(2)
8,N 1.8 7.2 14.8 3.5 12.7 19.1
S+
N 2.4 8.8 15.8 4.0 13.0 20.6

0.4 S
(1)
3,N 6.4 15.2 23.6 14.7 33.7 46.1

S
(2)
3,N 5.0 14.5 23.0 12.6 31.1 42.9

S
(1)
6,N 8.8 22.7 32.0 19.8 39.2 53.0

S
(2)
6,N 4.6 19.0 29.8 17.6 39.7 52.3

S
(1)
8,N 12.7 25.7 35.3 18.9 38.0 50.4

S
(2)
8,N 6.3 19.2 30.4 19.1 38.9 51.4
S+
N 5.7 20.6 32.0 18.2 40.6 54.0

0.6 S
(1)
3,N 17.0 34.8 47.0 47.7 67.6 78.7

S
(2)
3,N 14.7 31.7 45.7 43.1 66.5 78.3

S
(1)
6,N 25.6 45.5 57.6 52.2 74.2 82.0

S
(2)
6,N 19.8 44.0 55.7 53.3 75.6 82.8

S
(1)
8,N 29.9 49.1 60.2 50.9 74.9 84.5

S
(2)
8,N 20.3 41.2 55.0 51.4 73.8 81.9
S+
N 21.6 44.8 59.3 54.2 77.9 86.8

0.8 S
(1)
3,N 37.8 59.9 72.2 76.6 89.5 93.7

S
(2)
3,N 34.6 58.4 69.5 73.1 89.2 93.7

S
(1)
6,N 48.4 70.0 79.3 87.0 95.7 97.8

S
(2)
6,N 43.0 67.0 79.6 84.9 96.6 98.7

S
(1)
8,N 52.6 72.7 80.4 85.6 94.0 97.2

S
(2)
8,N 44.2 70.2 80.4 85.5 95.4 98.2
S+
N 47.3 71.2 81.3 86.1 96.1 98.2

1.0 S
(1)
3,N 58.0 76.1 83.5 94.2 98.5 99.4

S
(2)
3,N 55.0 76.2 84.1 93.5 98.5 99.6

S
(1)
6,N 72.6 87.4 93.1 98.0 99.8 100

S
(2)
6,N 68.3 86.0 93.3 98.7 99.8 100

S
(1)
8,N 77.4 89.8 94.2 97.8 99.4 99.9

S
(2)
8,N 74.4 89.9 94.5 97.9 99.7 99.8
S+
N 73.7 90.7 95.2 98.0 99.5 99.7

Table II. Empirical size and power (%) of S(1)
p,N , S(2)

p,N (p =3, 6, 8) and S+
N for the equality of

two mean functions.
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n1 = n2 = 25 n1 = n2 = 50
r γ Test α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%
1 0.0 T2,N 0 2.1 5.9 0.2 1.8 5.1

T3,N 0 1.6 6.5 0.5 1.7 4.9
T6,N 0 0.1 2.9 0.1 2.1 4.4
T ∗N 0.2 1.9 5.7 0.4 2.3 6.8

1.6 T2,N 0.2 2.0 6.9 0.7 10.6 28.0
T3,N 0.2 3.8 10.5 2.0 11.6 23.7
T6,N 0 0.4 2.8 0.1 6.0 13.8
T ∗N 3.6 25.8 48.1 23.3 58.5 74.7

2.0 T2,N 0.1 2.6 12.6 3.3 39.8 68.2
T3,N 0.5 6.1 18.0 1.5 9.4 21.6
T6,N 0 7.0 8.0 1.4 14.5 28.6
T ∗N 16.9 55.7 74.0 59.8 87.5 93.6

3 0.0 T2,N 0 1.6 4.7 0.4 1.9 5.1
T3,N 0 1.6 3.9 0.2 2.2 6.6
T6,N 0 0.3 13.0 0 1.3 4.3
T ∗N 0 1.9 6.4 0.2 2.4 6.3

1.6 T2,N 0.2 2.7 7.2 0.7 1.9 5.1
T3,N 0 2.6 7.1 0.2 4.8 11.8
T6,N 0 0.4 2.5 0.1 3.3 8.9
T ∗N 0.1 2.8 12.6 0.8 9.4 22.5

2.0 T2,N 0.5 5.5 13.3 3.0 18.6 34.0
T3,N 0.2 3.5 10.8 2.4 14.3 26.3
T6,N 0 0.5 4.4 0.6 9.0 19.6
T ∗N 1.4 14.3 31.5 9.3 36.0 57.5

5 0.0 T2,N 0 1.8 4.0 0.1 1.9 4.9
T3,N 0 1.2 3.7 0.2 1.6 5.3
T6,N 0 0.1 1.4 0 1.3 4.0
T ∗N 0 1.8 5.6 0.2 2.0 5.7

1.6 T2,N 0 1.6 4.9 0.3 4.0 7.9
T3,N 0.1 2.0 6.0 0.3 3.9 8.9
T6,N 0 0.1 2.1 0.2 2.7 7.8
T ∗N 0.1 2.6 9.9 0.3 4.0 11.2

2.0 T2,N 0.4 3.4 8.7 2.2 9.0 21.1
T3,N 0.2 2.2 8.2 1.5 11.4 22.3
T6,N 0 0.4 2.4 0.4 5.0 15.6
T ∗N 0.2 5.7 17.1 2.3 11.5 28.5

Table III. Empirical size and power (%) of Tp,N (p = 2, 3, 6) and T ∗N for the equality of two
covariance operators, when the difference between the covariance operators in the two popula-
tions is only along the k eigendirection (k = 1, 3, 5).
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n1 n2 Test α = 1% α = 5% α = 10%
25 25 T2,N 0.2 1.1 3.9

T ∗2,N 0.8 4.9 10.5
25 25 T3,N 0 1.0 3.5

T ∗3,N 0.6 4.5 9.7
50 50 T2,N 0 1.9 5.3

T ∗2,N 1.0 4.3 8.3
50 50 T3,N 0.2 1.2 5.1

T ∗3,N 0.7 5.3 9.4
100 100 T2,N 0 1.9 4.2

T ∗2,N 0.4 4.6 10.0
100 100 T3,N 0.5 1.9 4.5

T ∗3,N 0.6 5.4 9.4
Table IV. Empirical size (%) of Tp,N and T ∗p,N (p = 2, 3) for the equality of two covariance
functions.

n1 = n2 = 25 n1 = n2 = 50
γ Test α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

2.0 T2,N 0 4.3 21.5 7.6 61.3 85.7
T ∗2,N 0.8 19.1 44.7 39.6 83.0 94.1

2.2 T2,N 0 6.1 32.1 19.7 77.6 93.3
T ∗2,N 2.3 33.0 59.7 69.7 93.9 98.2

2.4 T2,N 0 13.4 44.2 35.9 90.3 97.8
T ∗2,N 4.5 46.3 73.2 81.9 97.7 99.1

2.6 T2,N 0 16.4 53.3 50.1 94.6 98.9
T ∗2,N 8.4 59.5 83.8 90.1 99.2 99.6

2.8 T2,N 0 23.1 66.1 65.5 98.1 99.6
T ∗2,N 12.5 66.9 90.7 94.6 99.1 99.8

3.0 T2,N 0 31.6 75.1 74.5 98.7 99.7
T ∗2,N 18.8 75.5 90.6 96.7 100 100

Table V. Empirical power (%) of T2,N and T ∗2,N for the equality of two covariance functions.
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