Example 1
rm(list = ls())
x=c(0.3, 1.4,1.0,-0.3,-0.2,1.0,2.0,-1.0,-0.7,0.7)
y=c(0.4,0.9,0.4,-0.3,0.3,0.8,0.7,-0.4,-0.2,0.7)
plot(x,y, xlab="x-axis", ylab="y-axis")
title(main="First Example")
out=lm(y~x)
summary(out)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.31763 -0.16482 0.03983 0.19906 0.24814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.14721 0.08257 1.783 0.112463
## x 0.43521 0.08192 5.313 0.000717 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2374 on 8 degrees of freedom
## Multiple R-squared: 0.7792, Adjusted R-squared: 0.7515
## F-statistic: 28.22 on 1 and 8 DF, p-value: 0.0007174
5.313^2
## [1] 28.22797
anova(out)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 1.59025 1.59025 28.224 0.0007174 ***
## Residuals 8 0.45075 0.05634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#1a
names(out)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xlevels" "call" "terms" "model"
names(summary(out))
## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"
out$coefficients
## (Intercept) x
## 0.1472130 0.4352072
b0hat=out$coefficients[1]
summary(out)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1472130 0.08257239 1.782835 0.1124628771
## x 0.4352072 0.08191963 5.312612 0.0007173926
b0stderr=summary(out)$coefficients[1,2]
t=(b0hat-0.7)/b0stderr
t
## (Intercept)
## -6.694575
qt(0.975,8)
## [1] 2.306004
#1d
b1hat=out$coefficients[2]
theta.hat=5*b0hat-b1hat
theta.hat
## (Intercept)
## 0.3008576
a1=sum((5*x+1)^2)
a1
## [1] 306
a2=10*9*var(x)
a2
## [1] 83.96
a=a1/a2
s=summary(out)$sigma
t.theta=theta.hat/(sqrt(a)*s)
t.theta
## (Intercept)
## 0.6639146
qt(0.975,8)
## [1] 2.306004
Example 2
rm(list = ls())
x=c(71,64,43,67,56,73,68,56,76,65,45,58,45,53,49,78)
y=c(82,91,100,68,87,73,78,80,65,84,116,76,97,100,105,77)
plot(x,y, xlab="x-axis", ylab="y-axis")
title(main="Second Example")
fit=lm(y~x)
summary(fit)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.6825 -5.0563 -0.3876 6.7444 14.0108
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 148.0507 11.5629 12.804 4.05e-09 ***
## x -1.0236 0.1882 -5.439 8.72e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.344 on 14 degrees of freedom
## Multiple R-squared: 0.6788, Adjusted R-squared: 0.6559
## F-statistic: 29.59 on 1 and 14 DF, p-value: 8.721e-05
fit$coef
## (Intercept) x
## 148.050676 -1.023589
lines(x,fit$fitted.values, col=2)
-qt(0.95,14)
## [1] -1.76131
test=data.frame(x=60)
predict(fit, test, interval="conf")
## fit lwr upr
## 1 86.63532 82.15794 91.1127
predict(fit, test, interval="pred")
## fit lwr upr
## 1 86.63532 68.18813 105.0825
predict(fit,test, interval="conf", level=0.95)
## fit lwr upr
## 1 86.63532 82.15794 91.1127
predict(fit,test, interval="conf", level=0.99)
## fit lwr upr
## 1 86.63532 80.42097 92.84967