The Intrinsic Dimension of Importance Sampling

Sergios Agapiou

Department of Statistics, University of Warwick

Joint work with: O. Papaspiliopoulos, D. Sanz-Alonso and A. M. Stuart

Reading-Warwick Data Assimilation Day, June 23, 2015

Enabling Quantification of

Three related problems

Bayesian Inverse Problems

Prior: $u \sim \mu_0$ Data: $y = \mathcal{G}(u) + \eta$ Posterior: $u|y \sim \mu^y$

Filtering

General Framework

 $\mu(du) \propto g(u)\pi(du)$, unknown normalizing constant $\pi(g)^{-1}$

Table of Contents

- General Framework
- Linear Bayesian Inverse Problems
- Filtering
- Conclusion

General Framework: Autonormalized IS

- **Aim**: estimate expectations of functions $f: \mathcal{X} \to \mathbb{R}$ wrt probability measure μ .
- Challenge: can only access π , $\mu(du) \propto g(u)\pi(du)$.
- Implicitly assume $0 < \pi(g) < \infty$.

$$\mu(f) = rac{\pi(fg)}{\pi(g)} pprox rac{rac{1}{N} \sum_{i=1}^{N} f(u^{i})g(u^{i})}{rac{1}{N} \sum_{j=1}^{N} g(u^{j})}, \quad u^{i} \sim \pi,$$

$$= \sum_{i=1}^{N} w^{i} f(u^{i}) =: \mathcal{I}^{N}(f),$$

where

$$w^{i} = \frac{g(u^{i})}{\sum_{j} g(u^{j})}.$$

• $\mathcal{I}^{N}(f)$ biased estimator of $\mu(f)$. SLLN suggests consistent.

Non-asymptotic Theorem 1; $\mu(du) \propto g(u)\pi(du)$

$$\rho := \frac{\pi(g^2)}{\pi(g)^2} \in [1, \infty]$$

• Assume $\pi(g^2) < \infty$ st $\rho < \infty$.

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

Bias:
$$\sup_{|f| \le 1} \left| \mathbb{E}[\mathcal{I}^N(f) - \mu(f)] \right| \le 12 \frac{\rho}{N}$$

MSE:
$$\sup_{|f| \le 1} \mathbb{E} \left[\left(\mathcal{I}^{N}(f) - \mu(f) \right)^{2} \right] \le 4 \frac{\rho}{N}$$

• Minimal assumptions on g, strong assumptions on f.

Non-asymptotic Theorem 2; $\mu(du) \propto g(u)\pi(du)$

Assume

- $\pi(g^k) < \infty$ for all $k \ge 2$ (often holds).
- $\pi(|f|^{2+\epsilon}) < \infty$, for $\epsilon > 0$ arbitrarily small.

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

Bias:
$$\left| \mathbb{E}[\mathcal{I}^N(f) - \mu(f)] \right| \leq \frac{C_{\text{bias}}}{N}$$

MSE:
$$\mathbb{E}\big[\big(\mathcal{I}^{N}(f) - \mu(f)\big)^{2}\big] \leq \frac{C_{\text{MSE}}}{N}$$

- Constants only involve π -moments of f, g and fg.
- Strong assumptions on g, minimal assumptions on f.

Comments

- Theorem 2 generalizes: conjugate assumptions on f and g.
- Recall

$$\mathcal{I}^{N}(f) = \frac{\frac{1}{N} \sum_{i=1}^{N} f(u^{i}) g(u^{i})}{\frac{1}{N} \sum_{j=1}^{N} g(u^{j})} =: \frac{\pi^{N}(fg)}{\pi^{N}(g)}$$

Decomposition

$$\mathcal{I}^{N}(f) - \mu(f) = \frac{\pi^{N}(fg)}{\pi^{N}(g)} - \frac{\pi(fg)}{\pi(g)}$$

$$= \frac{\pi^{N}(fg) - \pi(fg)}{\pi(g)} + \pi^{N}(fg)\left(\frac{1}{\pi^{N}(g)} - \frac{1}{\pi(g)}\right)$$

- Theorem 2 requires careful handling of 2nd term: follow DL09.
- Marcinkewicz-Zygmund inequality

$$\|\pi^{N}(h) - \pi(h)\|_{t} \leq C_{t} \|h(u_{1}) - \pi(h)\|_{t} N^{-\frac{1}{2}}, \quad \forall t \geq 2.$$

The ratio $\rho = \pi(g^2)/\pi(g)^2$

- \bullet ρ captures the variance of the weights w^i .
- Appears in Theorem 1: smaller ρ better error estimates.
- Effective Sample Size

$$ESS(N) := \left(\sum_{i=1}^{N} (w^{i})^{2}\right)^{-1} = \frac{\left(\sum_{i=1}^{N} g(u^{i})\right)^{2}}{\sum_{i=1}^{N} g(u^{i})^{2}}.$$

• For large N, SLLN gives

$$ESS(N) pprox rac{N}{
ho}.$$

• For efficient IS need small ρ .

Filtering

- General Framework
- 2 Linear Bayesian Inverse Problems
- Filtering
- 4 Conclusion

IS for Linear Bayesian Inverse Problems

- ullet \mathcal{X},\mathcal{Y} separable Hilbert spaces.
- Interested in recovering $u \in \mathcal{X}$ from noisy indirect data $y \in \mathcal{Y}$.

Bayesian Inverse Problems

Prior (proposal):
$$u \sim \mu_0 = N(0, \sigma \Sigma)$$
Data: $y = Ku + \eta \in \mathcal{Y}, \quad \eta \sim N(0, \gamma \Gamma)$
Posterior: $u|y \sim \mu^y$

• Sensible notion of dimension? When $\mu_0 \ll \mu^y$? Size of ρ ?

- \bullet \mathcal{X}, \mathcal{Y} separable Hilbert spaces.
- Interested in recovering $u \in \mathcal{X}$ from noisy indirect data $y \in \mathcal{Y}$.

Bayesian Inverse Problems

Prior (proposal):
$$u \sim \mu_0 = N(0, \sigma \Sigma)$$
Data: $y = Ku + \eta \in \mathcal{Y}, \quad \eta \sim N(0, \gamma \Gamma)$
Posterior: $u|y \sim \mu^y$

• Sensible notion of dimension? When $\mu_0 \ll \mu^y$? Size of ρ ?

Key: how informative the data is relative to the prior

- eigenvalues of $A:=\Sigma^{1/2}K^*\Gamma^{-1}K\Sigma^{1/2}$
- value of $\lambda := \gamma/\sigma$

Two notions of effective dimension: efd and τ

$$\tau := \frac{1}{\lambda} \mathrm{Tr}(A)$$

$$\tau := \frac{1}{\lambda} \operatorname{Tr}(A) \quad \text{efd} := \operatorname{Tr}\left((\lambda I + A)^{-1}A\right)$$

Motivation for τ : "collapse" of IS occurs iff $\tau = \infty$, BBL08.

Motivation for efd: Machine learning and SIP, Z02, LM14.

- Different behaviour as $\lambda \to 0$ (small noise compared to prior scaling).
- τ does not capture behaviour of A as $\lambda \to 0$.

Connection between τ , efd, ρ and $\mu^y \ll \mu_0$

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

Let $\nu(du, dy) = \mathbb{P}(dy|u)\mu_0(du)$ and assume A bdd. The following are equivalent:

- i) efd $< \infty$.
- ii) $\tau < \infty$.

General Framework

- iii) $\|\Gamma^{-\frac{1}{2}}Ku\| < \infty$, μ_0 -almost surely.
- iv) For ν -a.a. y, μ^y is absolutely continuous w.r.t. μ_0 and

$$\frac{d\mu^{y}}{d\mu_{0}}(u) \propto \exp\left(-\frac{\gamma}{2}\|Ku\|_{\Gamma}^{2} + \gamma\langle y, Ku\rangle_{\Gamma}\right) =: g(u; y)$$

with

$$0<\mu_0\big(g(\cdot;y)\big)<\infty.$$

v) It holds $0 < g(u; y) < \infty \nu$ -a.s. and for ν -a.a. y

$$\rho := \frac{\mu_0\left(g(\cdot;y)^2\right)}{\mu_0(g(\cdot;y))^2} < \infty.$$

Connection between τ, efd, ρ and $\mu^{y} \ll \mu_{0}$

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

Let $\nu(du, dy) = \mathbb{P}(dy|u)\mu_0(du)$ and assume A bdd. The following are equivalent:

- i) efd $< \infty$.
- ii) $\tau < \infty$.
- iii) $\|\Gamma^{-\frac{1}{2}}Ku\| < \infty$, μ_0 -almost surely.
- iv) For ν -a.a. y, μ^y is absolutely continuous w.r.t. μ_0 and

$$\frac{d\mu^{y}}{d\mu_{0}}(u) \propto \exp\left(-\frac{\gamma}{2}\|Ku\|_{\Gamma}^{2} + \gamma\langle y, Ku\rangle_{\Gamma}\right) =: g(u; y)$$

with

$$0<\mu_0(g(\cdot;y))<\infty.$$

v) It holds $0 < g(u; y) < \infty \nu$ -a.s. and for ν -a.a. y

$$\rho := \frac{\mu_0\left(g(\cdot;y)^2\right)}{\mu_0(g(\cdot;y))^2} < \infty.$$

$$y = Ku + \eta$$
, $\eta \sim N(0, \gamma \Gamma)$, $u \sim N(0, \sigma \Sigma)$, $\lambda := \gamma/\sigma$.

Assumption

- K^*K , Γ and Σ commute, hence diagonal in same basis.
- Eigenvalues of $A=\Sigma^{\frac{1}{2}}K^*\Gamma^{-1}K\Sigma^{\frac{1}{2}}:\{j^{-\beta}\}_{j=1}^{\infty},\quad \beta\geq 0.$
- Sequence of d-dim problems corresponding to A_d with eigenvalues $\{j^{-\beta}\}_{j=1}^d$.

$$\tau = \tau(d, \lambda, \beta), \text{ efd} = \text{efd}(d, \lambda, \beta), \quad \rho = \rho(d, \lambda, \beta).$$

$$au(\infty,\lambda,eta)=rac{1}{\lambda}\sum_{j=1}^{\infty}j^{-eta}<\infty\iffeta>1\iff\mu_{\infty}^{m{y}}\ll\mu_{0,\infty}.$$

Diagonal Inverse Problems

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

• Let $\beta > 1$ and $\lambda > 0$ fixed. As $d \to \infty$,

$$\rho(\mathbf{d}, \lambda, \beta) \nearrow \rho(\infty, \lambda, \beta) < \infty.$$

• Let $\beta > 1$, $d = \infty$. As $\lambda \to 0$, $\operatorname{efd}(\lambda) \approx \lambda^{-1/\beta}$ and

$$\mathbb{P}\Big[\rho(\lambda) \ge c_1 \exp\big(c_2 \operatorname{efd}(\lambda)\big)\Big] \longrightarrow 1.$$
 (small noise)

• Let $0 \le \beta \le 1$ and $\lambda > 0$ fixed. As $d \to \infty$, $\operatorname{efd}(d) \approx d^{1-\beta}$ and

$$\mathbb{P}\Big[
ho(d) \geq c_1 \expig(c_2 \operatorname{efd}(d)ig)\Big] \longrightarrow 1.$$
 (large d)

efd is the universally important quantity.

Table of Contents

- General Framework
- 2 Linear Bayesian Inverse Problems
- Filtering
- 4 Conclusion

IS for Filtering

Filtering

Signal:
$$v_1 = Mv_0 + N(0, Q), \quad v_0 \sim N(0, P) = \mathbb{P}_0.$$

Data:
$$y_1 = Hv_1 + N(0, R)$$
. Target: $\mathbb{P}(u|y_1), u = (v_0, v_1)$.

Standard proposal: $\pi_{st}(du) := \mathbb{P}_0(dv_0)\mathbb{P}(dv_1|v_0)$.

Optimal proposal: $\pi_{op}(du) := \mathbb{P}_0(dv_0)\mathbb{P}(dv_1|v_0,y_1)$.

IS collapse props for two proposals relate to collapse props of corresponding inverse problem.

- General Framework
- 2 Linear Bayesian Inverse Problems
- Filtering
- Conclusion

Highlights

• General framework:

- Balance between assumptions on test function and change of measure.

• Linear inverse problem:

- Introduced adequate notion of dimension.
- Showed its relevance for importance sampling.
- Emphasized the importance of absolute continuity.
- Filtering: extend analysis.

http://www.sergiosagapiou.com

General Framework

- P. Rebeschini, R. van Handel, Can local particle filters beat the curse of dimensionality?, Annals of Applied Probability, 2015.
- P. Doukhan, G. Lang, Evaluation of moments of a ratio with application to regression estimation, Bernoulli, 2009.
- T. Bengtsson, P. Bickel, B. Li, Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems, Probability and Statistics: essays in honor of David. A. Freedman, 2008.
- T. Zhang, Effective dimension and generalization of kernel learning, Advances in Neural Information Processing Systems, 2002.
- S. Lu, P. Mathé, Discrepancy based model selection in statistical inverse problems, Journal of Complexity, 2014.