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Three related problems

Bayesian Inverse Problems

Prior : u ⇠ µ0

Data : y = G(u) + ⌘
Posterior : u|y ⇠µy

Filtering
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General Framework

µ(du) / g(u)⇡(du), unknown normalizing constant ⇡(g)�1
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General Framework: Autonormalized IS

Aim: estimate expectations of functions f : X ! R wrt probability measure µ.

Challenge: can only access ⇡, µ(du) / g(u)⇡(du).

Implicitly assume 0 < ⇡(g) < 1.

µ(f ) =
⇡(fg)

⇡(g)
⇡

1
N

P
N

i=1 f (u
i)g(ui)

1
N

P
N

j=1 g(u
j)

, ui ⇠ ⇡,

=
NX

i=1

w i f (ui) =: IN(f ),

where

w i =
g(ui)P
j

g(uj)
.

IN(f ) biased estimator of µ(f ). SLLN suggests consistent.
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Non-asymptotic Theorem 1; µ(du) / g(u)⇡(du)

⇢ :=
⇡(g 2)

⇡(g)2
2 [1,1]

Assume ⇡(g 2) < 1 st ⇢ < 1.

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart ’15)

Bias: sup
|f |1

��E[IN(f )� µ(f )]
��  12

⇢

N

MSE: sup
|f |1

E
⇥�
IN(f )� µ(f )

�2⇤  4
⇢

N

Minimal assumptions on g , strong assumptions on f .
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Non-asymptotic Theorem 2; µ(du) / g(u)⇡(du)

Assume

- ⇡(g k) < 1 for all k � 2 (often holds).

- ⇡(|f |2+✏) < 1, for ✏ > 0 arbitrarily small.

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart ’15)

Bias:
��E[IN(f )� µ(f )]

��  Cbias

N

MSE: E
⇥�
IN(f )� µ(f )

�2⇤  CMSE

N

Constants only involve ⇡-moments of f , g and fg .

Strong assumptions on g , minimal assumptions on f .
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Comments

Theorem 2 generalizes: conjugate assumptions on f and g .

Recall

IN(f ) =
1
N

P
N

i=1 f (u
i)g(ui)

1
N

P
N

j=1 g(u
j)

=:
⇡N(fg)

⇡N(g)

Decomposition

IN(f )� µ(f ) =
⇡N(fg)

⇡N(g)
� ⇡(fg)

⇡(g)

=
⇡N(fg)� ⇡(fg)

⇡(g)
+ ⇡N(fg)

⇣ 1

⇡N(g)
� 1

⇡(g)

⌘

Theorem 2 requires careful handling of 2nd term: follow DL09.

Marcinkewicz-Zygmund inequality

k⇡N(h)� ⇡(h)k
t

 C
t

kh(u1)� ⇡(h)k
t

N�1

2, 8t � 2.
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The ratio ⇢ = ⇡(g 2)/⇡(g)2

⇢ captures the variance of the weights w i .

Appears in Theorem 1: smaller ⇢ better error estimates.

E↵ective Sample Size

ESS(N) :=

 
NX

i=1

(w i)2
!�1

=

⇣P
N

i=1 g(u
i)
⌘2

P
N

i=1 g(u
i)2

.

For large N , SLLN gives

ESS(N) ⇡ N

⇢
.

For e�cient IS need small ⇢.
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IS for Linear Bayesian Inverse Problems

X ,Y separable Hilbert spaces.

Interested in recovering u 2 X from noisy indirect data y 2 Y .

Bayesian Inverse Problems

Prior (proposal) : u ⇠ µ0 = N(0, �⌃)

Data : y = Ku + ⌘ 2 Y , ⌘ ⇠ N(0, ��)
Posterior : u|y ⇠ µy

Sensible notion of dimension? When µ0 ⌧ µy ? Size of ⇢ ?

Key: how informative the data is relative to the prior

- eigenvalues of A := ⌃1/2K ⇤��1K⌃1/2

- value of � := �/�
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Two notions of e↵ective dimension: efd and ⌧

⌧ := 1
�Tr (A) efd := Tr

⇣
(�I + A)�1A

⌘

Motivation for ⌧ : ”collapse” of IS occurs i↵ ⌧ = 1, BBL08.

Motivation for efd: Machine learning and SIP, Z02, LM14.

Di↵erent behaviour as � ! 0 (small noise compared to prior scaling).

⌧ does not capture behaviour of A as � ! 0.
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Connection between ⌧, efd, ⇢ and µy ⌧ µ0

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart ’15)

Let ⌫(du, dy) = P(dy |u)µ0(du) and assume A bdd. The following are equivalent:

i) efd < 1.

ii) ⌧ < 1.

iii) k��1

2Kuk < 1, µ0-almost surely.

iv) For ⌫-a.a. y , µy is absolutely continuous w.r.t. µ0 and

dµy

dµ0
(u) / exp

⇣
��

2
kKuk2� + �hy ,Kui�

⌘
=: g(u; y)

with
0 < µ0

�
g(·; y)

�
< 1.

v) It holds 0 < g(u; y) < 1 ⌫-a.s. and for ⌫-a.a. y

⇢ :=
µ0

�
g(·; y)2

�

µ0(g(·; y))2
< 1.
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Diagonal Inverse Problems

y = Ku + ⌘, ⌘ ⇠ N(0, ��), u ⇠ N(0, �⌃), � := �/�.

Assumption

- K ⇤K , � and ⌃ commute, hence diagonal in same basis.

- Eigenvalues of A = ⌃
1

2K ⇤��1K⌃
1

2 : {j��}1
j=1, � � 0.

- Sequence of d -dim problems corresponding to A
d

with eigenvalues {j��}d
j=1.

⌧ = ⌧ (d ,�, �), efd = efd(d ,�, �), ⇢ = ⇢(d ,�, �).

⌧ (1,�, �) =
1

�

1X

j=1

j�� < 1 () � > 1 () µy

1 ⌧ µ0,1.
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Diagonal Inverse Problems

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart ’15)

Let � > 1 and � > 0 fixed. As d ! 1,

⇢(d ,�, �) % ⇢(1,�, �) < 1.

Let � > 1, d = 1. As � ! 0, efd(�) ⇡ ��1/� and

P
h
⇢(�) � c1 exp

�
c2 efd(�)

�i
�! 1. (small noise)

Let 0  �  1 and � > 0 fixed. As d ! 1, efd(d) ⇡ d1�� and

P
h
⇢(d) � c1 exp

�
c2 efd(d)

�i
�! 1. (large d)

efd is the universally important quantity.
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IS for Filtering

Filtering

Signal: v1 = Mv0 + N(0,Q), v0 ⇠ N(0,P) = P0.

Data: y1 = Hv1 + N(0,R) . Target: P(u|y1), u = (v0, v1).

v1

v0 v1|y1
v0|y1

Signal dy
namics

Inverse problem

Inverse problem

Signal d
ynamics

Standard proposal: ⇡
st

(du) := P0(dv0)P(dv1|v0).
Optimal proposal: ⇡

op

(du) := P0(dv0)P(dv1|v0, y1).

IS collapse props for two proposals relate to collapse props of corresponding inverse problem.
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Highlights

General framework:

- Balance between assumptions on test function and change of measure.

Linear inverse problem:

- Introduced adequate notion of dimension.

- Showed its relevance for importance sampling.

- Emphasized the importance of absolute continuity.

Filtering: extend analysis.
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