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Enabling Quantification of

EQUIP

Uncertainty for Inverse Problems



Three related problems

Bayesian Inverse Problems

Prior: u ~ Ly

Posterior: uly ~ 1Y
Data: y =G(u)+n } o~

Vj\Yj """""""""""""""""""""""""""""""""""" ] Vj+1’Yj+1

General Framework

u(du) o< g(u)m(du), unknown normalizing constant m(g)™*
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General Framework

General Framework: Autonormalized 1S

@ Aim: estimate expectations of functions f : X — R wrt probability measure /.
e Challenge: can only access 7, u(du) o g(u)m(du).

@ Implicitly assume 0 < 7(g) < oc.

where .
i g(u’)

)

w

o Z"(f) biased estimator of /i(f). SLLN suggests consistent.



General Framework

Non-asymptotic Theorem 1; u(du) < g(u)m(du)

_ 7(g%)
m(g)?

€ [1, o]

o Assume 7(g?) < 0o st p < oo.

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

Bias:  sup |E[ZV(F) — u(F)]| < 122
If|<1 N

MSE: sup E[(ZN(f) — ,u(f))z] < 4%
1f|<1

@ Minimal assumptions on g, strong assumptions on f.



General Framework

Non-asymptotic Theorem 2; u(du) o< g(u)mw(du)

@ Constants only involve m-moments of f, g and fg.

@ Strong assumptions on g, minimal assumptions on f.



General Framework
Comments

@ Theorem 2 generalizes: conjugate assumptions on f and g.

@ Recall

1(r) - REL S _ ()

N J= 1g( ) 7'('N(g)

@ Decomposition

N _ — _

=00 =28 ™ )
M) -wle) | w11
@ )

@ Theorem 2 requires careful handling of 2nd term: follow DL09.

@ Marcinkewicz-Zygmund inequality

|7V (h) = w(B)lle < Cellh(un) = w(B)I| N2, Ve > 2



General Framework

The ratio p = m(g?)/m(g)?

@ p captures the variance of the weights w'.
@ Appears in Theorem 1: smaller p better error estimates.

o Effective Sample Size

ESS(N) = (fj(w"f) _ (Z ’ng u2 |

@ For large N, SLLN gives

@ For efficient IS need small p.
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Linear Bayesian Inverse Problems

IS for Linear Bayesian Inverse Problems

e X, ) separable Hilbert spaces.

@ Interested in recovering u € X from noisy indirect data y € ).

Bayesian Inverse Problems

Prior (proposal): u ~ 19 = N(0,0X)

Posterior: uly ~ 11’
Data: y=Ku+ne)Y, n~ N0~

@ Sensible notion of dimension? When g < 117 ? Size of p?



Linear Bayesian Inverse Problems

IS for Linear Bayesian Inverse Problems

e X, ) separable Hilbert spaces.

@ Interested in recovering u € X from noisy indirect data y € ).

Bayesian Inverse Problems

Prior (proposal): u ~ 19 = N(0,0X)

Posterior: uly ~ 11’
Data: y=Ku+ne)Y, n~ N0~

@ Sensible notion of dimension? When g < 117 ? Size of p?

Key: how informative the data is relative to the prior
- eigenvalues of A := YU 2K*—1Ky1/2
- value of A\ := /0o




Linear Bayesian Inverse Problems

Two notions of effective dimension: efd and 7

7= LTr(A)| |efd .= T (()\l + A)—lA)

Motivation for 7: "collapse” of IS occurs iff 7 = oo, BBLOS.

Motivation for efd: Machine learning and SIP, 202, LM14.

@ Different behaviour as A — 0 (small noise compared to prior scaling).

@ 7 does not capture behaviour of A as A — 0.



Linear Bayesian Inverse Problems

Connection between 7, efd, p and 1 < g

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

Let v(du, dy) = P(dy|u)po(du) and assume A bdd. The following are equivalent:
1) efd < oo.
i) 7 < 00.

i) |IT"2Kul|| < oo, po-almost surely.
)

iv) For v-a.a. y, 1/ is absolutely continuous w.r.t. 1y and

du”
d—,uo(U) X exp (—EHKUH% +{y, KU>F> =: g(u;y)
with

0 < puo(g(1y)) < oo

v) It holds 0 < g(u;y) < oo v-a.s. and for v-a.a. y

_ o (g(¥)°)
1o(g(: y))?

< 00
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Connection between 7, efd, p and 1 < g

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)

The following are equivalent:

(1Y is absolutely continuous w.r.t. g




Linear Bayesian Inverse Problems
Diagonal Inverse Problems

y=Ku+mn, n~NQ0T), u~NQOoY), \i=7/0 J

- K*K, I and X commute, hence diagonal in same basis.

- Eigenvalues of A = LK T 1KYz : {j7}*, B>0.

- Sequence of d-dim problems corresponding to Ay with eigenvalues {j‘ﬁ}le.

T:T(d,)\,ﬁ), efd:efd(d,)\,ﬁ), p:p(dv)‘vﬁ)'

o

1
T(OO,)\,ﬁ):XZj_B<OO = [>1 = 1 < foso

j=1



Linear Bayesian Inverse Problems
Diagonal Inverse Problems

Theorem (A., Papaspiliopoulos, Sanz-Alonso, Stuart '15)
@ Let 3 >1and A > 0 fixed. As d — o0,

p(d, A, 8) /" p(oo, A, B) < oco.
o Let 3>1,d=00.As A = 0, efd(\) =~ A1/ and

P[p()\) > crexp(o efd()\))} — 1. (small noise)

o Let 0 <3< 1and X\ >0 fixed. As d — oo, efd(d) ~ d*~” and

P[p(d) > crexp(c efd(d))} — 1. (large d)

efd is the universally important quantity.
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Filtering

IS for Filtering

Signal: vy = Mvy + N(0, Q), vo ~ N(0, P) = Py.
Data:  y1 = Hwv; + N(O,R) . Target: P(uly1), u=(w, v1).

‘ |
Sign | dynam\CS Vi Nverse Problem
VO oo vi|y1
% am\CS

voly1 T~ Gignal dy"

Standard proposal: 7.(du) := Py(dvy)P(dvi|vp).
Optimal proposal: 7,,(du) := Py(dvo)P(dvi|vo, y1).

IS collapse props for two proposals relate to collapse props of corresponding inverse problem.
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Conclusion

Highlights

@ General framework:

- Balance between assumptions on test function and change of measure.

@ Linear inverse problem:

- Introduced adequate notion of dimension.
- Showed its relevance for importance sampling.

- Emphasized the importance of absolute continuity.

e Filtering: extend analysis.
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