Practical unbiased Monte Carlo for intractable models

Sergios Agapiou

Department of Statistics, University of Warwick

Statistics Seminar 20th March 2015, Imperial College London

Enabling Quantification of

http://www.sergiosagapiou.com/

Outline

- Problem overview
- 2 UQ example
- Unbiasing theory
- Removing specific sources of bias
- Performance/Optimization
- 6 Conclusions

Outline

- Problem overview
- 2 UQ example
- Unbiasing theory
- Removing specific sources of bias
- Performance/Optimization
- 6 Conclusions

Problem overview

Want to estimate expectations of functions f wrt an intractable measure μ , $\mathbb{E}_{\mu}[f] := \mathbb{E}_{\mu}[f(\cdot)].$

e.g. μ is limit of:

- approximations corresponding to time-discretizations of SDE's
- basis expansion (Karhunen-Loeve)
- finite-time distributions of Markov chains (MCMC)

Problem overview

ullet Would like to use Monte Carlo estimator: for $X^{(m)} \stackrel{\it iid}{\sim} \mu$ let

$$R_M := \frac{1}{M} \sum_{m=1}^{M} f(X^{(m)}).$$

For all M

$$\mathbb{E}[R_M] = \mathbb{E}_{\mu}[f]$$
 (R_M unbiased)

and

$$R_M \xrightarrow{M} \mathbb{E}_{\mu}[f]$$
, almost surely $(R_m \text{ consistent})$

Problem overview

Intractability of μ forces the use of approximations μ_i introducing bias.

- time-discretization bias in SDEs (GR13)
- discretization bias for measures in function space (ARV14)
- burn-in time for MCMC (GR13, ARV14)
- burn-in time and discretization bias for MCMC in function space (ARV14)

Bias typically leads to sub-optimal convergence rates of MC estimator (ergodic average) in infinite computational budget limit.

(even MLMCMC loses at least a log, see KST13)

Outline

- Problem overview
- 2 UQ example
- Unbiasing theory
- Removing specific sources of bias
- Performance/Optimization
- 6 Conclusions

Example - Contamination scenario

- u permeability field

- p pressure
- v Darcy velocity
- -p = G(u)

Quantity of interest: $f(u) = \mathbb{E}[\inf_{t>0}\{|z(t)| > R\}]$

Example - UQ in contamination scenario

Permeability field u unknown, have prior information $u \sim \mu_0$.

- Vanilla-UQ: probe $\mu_0 \circ f^{-1}$, e.g. estimate $\mathbb{E}_{\mu_0}[f(u)]$.
- Have noisy indirect measurements of pressure at J locations: data model in \mathbb{R}^J

$$y = \mathcal{G}(u) + \eta, \ \eta \sim N(0, I).$$

Formulate Bayesian inverse problem (see DS13), μ^y posterior on u|y

$$rac{d\mu^y}{d\mu_0}(u;y) \propto \exp\left(-rac{1}{2}\|y-\mathcal{G}(u)\|^2
ight).$$

• **BIP-UQ**: probe $\mu^y \circ f^{-1}$, e.g. estimate $\mathbb{E}_{\mu^y}[f(u)]$.

Example - UQ sources of bias

Vanilla-UQ:

- μ_0 is ∞ -dim, needs to be approximated by $\mu_{0,i}$ in \mathbb{R}^i introducing discretization bias.

• BIP-UQ:

- cannot sample μ^y directly, construct Markov chain targeting μ^y , use finite-time distributions $\mu^{y,k}$ burn-in time issues.
- to implement in computer construct Markov chain targeting approximation μ_i^y in \mathbb{R}^i , use finite-time distributions $\mu_i^{y,k}$ introducing discretization bias and burn-in time issues.

Outline

- Problem overview
- 2 UQ example
- Unbiasing theory
- Removing specific sources of bias
- Performance/Optimization
- 6 Conclusions

Debiasing idea - John von Neumann, Stanislaw Ulam

- We study unbiased estimation of $\mathbb{E}_{\mu}[f]$ using biased samples, $X_i \sim \mu_i$.
- ullet Assume $\mathbb{E}_{\mu_i}[f] \stackrel{i}{ o} \mathbb{E}_{\mu}[f].$
- Define $\Delta_i := f(X_i) f(X_{i-1})$.
- If Fubini applies

$$\mathbb{E}_{\mu}[f] = \sum_{i=1}^{\infty} (\mathbb{E}_{\mu_i}[f] - \mathbb{E}_{\mu_{i-1}}[f]) = \sum_{i=1}^{\infty} \mathbb{E}\Delta_i \stackrel{?}{=} \mathbb{E}\sum_{i=1}^{\infty} \Delta_i.$$

• $\sum_{i=1}^{\infty} \Delta_i$ is unbiased but requires infinite computing time.

Debiasing idea - John von Neumann, Stanislaw Ulam

$$Z := \sum_{i=0}^{N} \frac{\Delta_i}{\mathbb{P}(N \geq i)},$$

N integer-valued r.v. independent of Δ_i , s.t. $\mathbb{P}(N \geq i) > 0, \forall i$.

If Fubini applies

$$\mathbb{E}[Z] = \mathbb{E}\left[\sum_{i=0}^{\infty} \frac{\mathbb{1}_{\{N \geq i\}} \Delta_i}{\mathbb{P}(N \geq i)}\right] \stackrel{?}{=} \sum_{i=0}^{\infty} \frac{\mathbb{E}[\mathbb{1}_{\{N \geq i\}} \Delta_i]}{\mathbb{P}(N \geq i)} = \sum_{i=0}^{\infty} \mathbb{E}\Delta_i = \mathbb{E}_{\mu}[f].$$

• Z unbiased and requires finite computing time (almost).

Debiasing idea - John von Neumann, Stanislaw Ulam

- To be practical, Z needs to have finite variance and finite expected computing time.
- $Z^{(m)}$ independent copies of Z, $Z_M := \frac{1}{M} \sum_{m=1}^{M} Z^{(m)}$.
- $Z_{M(c)}$ MC estimator with computational budget c.
- ullet GW92, as $c o \infty$

$$\sqrt{c} \ \left(Z_{\mathcal{M}(c)} - \mathbb{E}_{\mu}[f] \right) \Rightarrow \sqrt{\mathbb{E}(au).\mathsf{Var}(Z)} \ \mathcal{N}(0,1).$$

- Optimal rate of convergence $c^{-\frac{1}{2}}$.
- Optimize by minimizing $\mathbb{E}(\tau)$. Var(Z) (refer to this as MSE-work product).

Unbiasing theory of Glynn and Rhee

Proposition (GR13)

Assume

$$\sum_{i\leq \ell} \frac{\|\Delta_i\|_2 \|\Delta_\ell\|_2}{\mathbb{P}(N\geq i)} < \infty.$$

Then $Z:=\sum_{i=0}^N \frac{\Delta_i}{\mathbb{P}(N\geq i)}$ is an unbiased estimator for $\mathbb{E}_{\mu}[f]$ with finite variance.

Can use $\tilde{\Delta}_i$ copies of Δ_i s.t. $\{\tilde{\Delta}_i\}$ mutually independent.

• t_i expected cost of generating Δ_i . Expected computing time of Z

$$\mathbb{E}(au) = \mathbb{E}\sum_{i=0}^{\mathcal{N}} t_i = \mathbb{E}\sum_{i=1}^{\infty} t_i \mathbb{1}_{\{\mathcal{N} \geq i\}} = \sum_{i=0}^{\infty} t_i \mathbb{P}(\mathcal{N} \geq i).$$

• To be possible to choose $\mathbb{P}(N \geq i)$ s.t. Z practical, suffices to generate Δ_i 's with correct expectation s.t. $\|\Delta_i\|_2^2$ decays sufficiently faster than t_i blows-up.

Outline

- 1 Problem overview
- UQ example
- Unbiasing theory
- Removing specific sources of bias
- Performance/Optimization
- 6 Conclusions

Removing discretization bias

- ullet $\mathcal{X}=L^2[0,1]$, $\{arphi_\ell\}$ complete orthonormal basis.
- ullet μ Gaussian measure in ${\mathcal X}$ given via the Karhunen-Loeve expansion:

$$\mu = \mathcal{L}\left(\sum_{\ell=1}^{\infty}\ell^{-\mathsf{a}}\xi_{\ell}arphi_{\ell}
ight), \qquad \xi_{\ell}\stackrel{\mathit{iid}}{\sim} \mathit{N}(\mathsf{0},\mathsf{1}), \quad \mathsf{a}>rac{1}{2}.$$

ullet To estimate $\mathbb{E}_{\mu}[f]$, need to truncate introducing discretization bias in MC estimators. (Vanilla-UQ example)

Aim: unbiasedly estimate $\mathbb{E}_{\mu}[f]$ in finite time for $f: \mathcal{X} \to \mathbb{R}$ Lipshitz.

Removing discretization bias

Approximations

$$\mu_i = \mathcal{L}\left(\sum_{\ell=1}^{j_i} \ell^{-\mathsf{a}} \xi_\ell arphi_\ell
ight), \quad j_i ext{ increasing}.$$

- $\Delta_i = f(u_i) f(u_{i-1})$, $u_i \sim \mu_i$ using same random seeds.
- Bound

$$\|\Delta_i\|_2^2 = \mathbb{E}(|f(u_i) - f(u_{i-1})|^2) \le \|f'\|_{\infty}^2 \mathbb{E}(\|u_i - u_{i-1}\|^2) = \mathcal{O}(j_{i-1}^{1-2a} - j_i^{1-2a}).$$

• Cost of Δ_i , $t_i = \mathcal{O}(j_i)$ (# N(0,1) draws).

Removing discretization bias

Theorem 1 (ARV14)

Assume a > 1. Then \exists choices j_i and $\mathbb{P}(N \ge i)$, s.t. $Z = \sum_{i=1}^{N} \frac{\Delta_i}{\mathbb{P}(N \ge i)}$ is unbiased estimator of $\mathbb{E}_{\mu}[f]$ with finite variance and finite expected computing time.

Proof.

- Consider $j_i = 2^i$. Use Proposition from GR13.
- $-t_i = \mathcal{O}(2^i), \|\Delta_i\|_2^2 = \mathcal{O}(2^{i(1-2a)}).$
- For a > 1, $||\Delta_i||_2^2$ decays sufficiently faster than t_i blows-up.
- Can choose $\mathbb{P}(N \geq i)$ s.t. $\mathbb{E}(\tau)$, $\mathrm{Var}(Z) < \infty$.

- \mathcal{X} general state space, d distance in \mathcal{X} .
- Measure μ intractable, cannot be sampled directly but can construct Markov chain $\mathbb{X} = (X_n)_{n \in \mathbb{N}}$ with transition kernel P and stationary distribution μ .
- \bullet a_i increasing positive integers.
- To estimate $\mathbb{E}_{\mu}[f]$, use finite-time distributions $\mu_i = \mathcal{L}(X_{a_i})$ introducing burn-in issues.

Aim: unbiasedly estimate $\mathbb{E}_{\mu}[f]$ in finite time for $f: \mathcal{X} \to \mathbb{R}$ d-Lipschitz.

- Finite-time distributions converge weakly. This is not enough for $f(X_i)$ to come close in L^2 , i.e. for convergence of Δ_i .
- GR13: use tricks which turn weak convergence to a.s. convergence/coalescence (coupling from the past Propp & Wilson). Require uniform ergodicity.
- ARV14: suffices to have simulatable coupling K between chains started at different states which contracts wrt d.

Assumption

- $K^{n}(d^{2}(x, y)) \leq cr^{n}d^{2}(x, y)$ for some r < 1;
- $\exists x_0 \in \mathcal{X}$ s.t. $sup_n P^n d(x_0, \cdot) < \infty$.

• To generate Δ_i , use top level chain \mathcal{T}^i running for a_i steps and bottom level chain \mathcal{B}^i running for a_{i-1} steps, coupled as follows:

Coupled contraction for unbiased estimation

- set $\mathcal{T}_{-a_i}^i = x_0$ and run chain until $\mathcal{T}_{-a_{i-1}}^i$;
- set $\mathcal{B}_{-a_{i-1}}^i = x_0;$
- evolve \mathcal{B}_k^i and \mathcal{T}_k^i jointly according to K upto time 0;
- set $\Delta_i = f(\mathcal{T}_0^i) f(\mathcal{B}_0^i)$.

$$x_0 = \mathcal{B}^i_{-a_{i-1}} \dots \mathcal{B}^i_{-a_0} \dots \mathcal{B}^i_0$$
 $| | | | | | \Delta_i = f(\mathcal{T}^i_0) - f(\mathcal{B}^i_0)$
 $x_0 = \mathcal{T}^i_{-a_i} \dots \mathcal{T}^i_{-a_{i-1}} \dots \dots \mathcal{T}^i_0$

Estimate

$$\|\Delta_{i}\|_{2}^{2} \leq \|f'\|_{\infty}^{2} \mathbb{E}d^{2} \left(\mathcal{T}_{0}^{i}, \mathcal{B}_{0}^{i}\right)$$

$$\leq c \mathbb{E}\mathbb{E} \left(d^{2} \left(\mathcal{T}_{0}^{i}, \mathcal{B}_{0}^{i}\right) | \mathcal{F}_{-a_{i-1}}\right)$$

$$\leq c \mathbb{E} \left(K^{a_{i-1}}d^{2} \left(\mathcal{T}_{-a_{i-1}}^{i}, x_{0}\right)\right)$$

$$\leq c r^{a_{i-1}} \mathbb{E}d^{2} \left(\mathcal{T}_{-a_{i-1}}^{i}, x_{0}\right)$$

$$\leq c r^{a_{i-1}}.$$

• Cost of Δ_i , $t_i = \mathcal{O}(a_i)$ (number of steps).

Theorem 2 (ARV14)

 \exists choices a_i and $\mathbb{P}(N \geq i)$, s.t. $Z = \sum_{i=1}^{N} \frac{\Delta_i}{\mathbb{P}(N \geq i)}$ is unbiased estimator of $\mathbb{E}_{\mu}[f]$ with finite variance and finite expected computing time.

Proof.

- Use Proposition from GR13.
- $-t_i = \mathcal{O}(a_i), \|\Delta_i\|_2^2 = \mathcal{O}(r^{a_i}).$
- $\|\Delta_i\|_2^2$ decays sufficiently faster than t_i blows-up.
- Can choose $\mathbb{P}(N \geq i)$ s.t. $\mathbb{E}(\tau), \mathrm{Var}(Z) < \infty$.

Removing burn-in time issues - remarks

- Genuine generalization of GR13.
- Algebraic contraction rate of the coupling is sufficient for UE to work

$$K^n d^2 \leq C n^{-2r} d^2, \quad r > \frac{1}{2}.$$

• Many couplings available from e.g. stochastic control and coupling from the past.

Removing both burn-in and discretization bias

- Combining can perform UE of $\mathbb{E}_{\mu}[f]$ for μ both ∞ -dim and only accessible in the limit of a Markov chain (BIP-UQ example).
- \mathcal{X} ∞ -dim state space, d distance in \mathcal{X} .
- Approximation using finite-time distributions and discretizing space.

Aim: unbiasedly estimate $\mathbb{E}_{\mu}[f]$ in finite time for $f: \mathcal{X} \to \mathbb{R}$ d-Lipschitz.

Removing both burn-in and discretization bias

- a_i , j_i increasing sequences of integers.
- Top chain \mathcal{T}^i more steps and higher discretization level than bottom chain \mathcal{B}^i .

$$j_{i-1}: \qquad x_0 = \mathcal{B}^i_{-a_{i-1}} \dots \mathcal{B}^i_{-a_0} \dots \mathcal{B}^i_0 \ | | | | | | \} \Delta_i = f(\mathcal{T}^i_0) - f(\mathcal{B}^i_0) \ j_i: x_0 = \mathcal{T}^i_{-a_i} \dots \mathcal{T}^i_{-a_{i-1}} \dots \dots \mathcal{T}^i_0$$

Removing both burn-in and discretization bias - strategy

$$\|\Delta_i\|_2^2 \leq \|f'\|_\infty^2 \mathbb{E} d^2(\mathcal{T}_0^i, \mathcal{B}_0^i)$$

- Need good couplings between chains started at different initial states and at neighbouring discretization levels.
- d bdd distance. Suppose MCMC has fixed-state space contracting coupling s.t.

$$\mathbb{E}d\left(\mathcal{T}_n^i(x_1), \mathcal{T}_n^i(x_2)\right) \le r^n d(x_1, x_2). \tag{artificial}$$

Removing both burn-in and discretization bias - strategy

 $ullet \mathcal{I}_k^i$ intermediate steps evolving \mathcal{B}_{k-1}^i according to top level kernel P_{j_i} .

$$\mathbb{E}d(\mathcal{T}_{0}^{i},\mathcal{B}_{0}^{i}) \leq \mathbb{E}d(\mathcal{T}_{0}^{i},\mathcal{I}_{0}^{i}) + \mathbb{E}d(\mathcal{I}_{0}^{i},\mathcal{B}_{0}^{i}) \\ \leq rd(\mathcal{T}_{-1}^{i},\mathcal{B}_{-1}^{i}) + C_{j_{i-1},j_{i}} \\ \dots \\ \leq r^{a_{i-1}} + C_{j_{i-1},j_{i}} \frac{1-r^{a_{i-1}}}{1-r}.$$

- $C_{j_{i-1},j_i} = \mathcal{O}(i^{-p}) \stackrel{i}{\to} 0$ provided acceptance behaviour of $P_{j_{i-1}}$ and P_{j_i} similar for large i.
- Optimize by choosing $j_i = j_i(a_i)$ to balance terms.
- Get convergence $\|\Delta_i\|_2^2 \lesssim r^{a_i}$ as $i \to \infty$, sufficient for unbiased estimation if e.g. $t_i \lesssim a_i j_i^{\theta}$.

Removing both burn-in and discretization bias

In ARV14, show this works:

- 1. in non-linear Bayesian inverse problem setting with uniform priors, using independence sampler under assumptions securing uniform ergodicity;
- 2. for targets μ which have Lipschitz log-density wrt Gaussian, using pCN algorithm (MH with proposal $X_{k+1} = \lambda X_k + \sqrt{1 \lambda^2} \xi$).

Use fixed-state space, dimension independent coupling contraction results from HSV11, DM14.

Outline

- 1 Problem overview
- UQ example
- Unbiasing theory
- Removing specific sources of bias
- Performance/Optimization
- 6 Conclusions

Toy model - Gaussian autoregression

• 1d Gaussian autoregression

$$X_{n+1} =
ho \, X_n + \sqrt{1-
ho^2} \, \xi_{n+1},$$
 $ho \in (0,1), \, \xi_n \, ext{i.i.d.} \, \, extstyle N(0,1).$

- Ergodic with invariant distribution $\mu = N(0,1)$. Estimate $\mathbb{E}_{\mu}[\mathrm{Id}] = 0$.
- UE constructed by coupling chains started at different points using same randomness.
- Coupling contracts geometrically with rate $r = \rho$ for d(x, y) = |x y|.

Comparison of unbiased estimator (UE) vs ergodic average (EA)

- Compare MSE-work product of MC estimator based on UE vs EA.
- For EA

$$\lim_{n o \infty} \mathsf{MSE} ext{-work} = rac{1+
ho}{1-
ho} T_{\mathsf{step}}.$$

For UE

$$\mathsf{MSE\text{-}work} = \left(\sum_{i=1}^{\infty} \frac{\rho^{2\mathsf{a}_{i-1}} \left(1 - \rho^{2(\mathsf{a}_i - \mathsf{a}_{i-1})}\right)}{\mathbb{P}(\mathsf{N} \geq i)} + 1 - \rho^{2\mathsf{a}_0}\right) \sum_{i=0}^{\infty} \mathsf{a}_i \, \mathbb{P}(\mathsf{N} \geq i).$$

- Can optimize performance of UE by minimizing wrt a_i and $\mathbb{P}(N \geq i)$. Hard!
- In GR13 consider only $a_i = i$, optimize over $\mathbb{P}(N \geq i)$.

Optimized $\mathbb{P}(N \geq i)$, fixed $a_i = 4(i+1)$

——— MSE–work product of the unbiased estimator

---- Asymptotic MSE-work product of the ergodic average

— Ratio of the MSE-work products

Optimized $\mathbb{P}(N \geq i)$ and a_i over subclass $a_i = m(i+1)$

——— MSE–work product of the unbiased estimator

---- Asymptotic MSE-work product of the ergodic average

— Ratio of the MSE–work products

10-core parallel setting, $\rho = 0.8$

Outline

- 1 Problem overview
- UQ example
- Unbiasing theory
- Removing specific sources of bias
- Performance/Optimization
- 6 Conclusions

Conclusions - further work

- UE is often feasible.
- Optimization wrt parameters is crucial especially in function space setting (although performance not overly sensitive on knowledge of the coupling).
- UE easily parallelizable: a) use independent copies of Z, b) Δ_i 's independent.
- UE seems competitive. Looking forward to comparisons in problems of higher complexity.

http://www.sergiosagapiou.com/

- S. Agapiou, G. O. Roberts and S. J. Vollmer, *Unbiased Monte Carlo: posterior estimation for intractable/infinite dimensional models*, arXiv:1411.7713
- C. H. Rhee, *Unbiased estimation with biased samples*, PhD thesis, Stanford University, 2013, (supervisor P. W. Glynn).
- J. G. Propp and D. B. Wilson, *Exact sampling with coupled Markov chains and applications to statistical mechanics*, Random Structures and Algorithms, 1996.
- M. Dashti and A. M. Stuart, *The Bayesian approach to inverse problems*, arXiv:1302.6989.
- M. Hairer, A. M. Stuart and S. J. Vollmer *Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions*, The Annals of Applied Probability, 2014.
- C. Ketelsen, R. Scheichl and A. K. Teckentrup *A hierachical Multilevel Markov Chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow*, arXiv:1303.7343.