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Motivation



Series Priors

• For (φk) an orthonormal basis of L2[0, 1], let

f =
∞∑
k=1

σkζkφk(·),

where ζk
iid∼ h and σk = τk−1/2−S , scaling τ > 0, regularity S > 0.

• For (ψlk) an orthonormal wavelet basis of L2[0, 1], let

f =
∞∑
l=1

∑
k∈Kl

slζlkψlk(·)

where ζlk
iid∼ h and sl = τ2−l(1/2+S), scaling τ > 0, regularity S > 0.
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Literature - Rates of Contraction

• Gaussian: for appropriately tuned τ or S get minimax optimal

contraction rates over Sobolev or Hölder regularity classes (not

spatially inhomogeneous Besov)

- A. van der Vaart and H. van Zanten, Rates of contraction of posterior

distributions based on Gaussian process priors, Annals of Statistics, 2008

- Many contributions in many settings!

• Laplace (more generally p-exponential): for appropriately tuned τ

and/or S get minimax optimal contraction rates over Sobolev,

Hölder, Besov classes

- S. Agapiou, M. Dashti and T. Helin, Rates of contraction of posterior

distributions based on p-exponential priors, Bernoulli, 2021

- M. Giordano and K. Ray, Nonparametric Bayesian inference for reversible

multidimensional diffusions, Annals of Statistics, 2022

- S. Agapiou and S. Wang, Laplace priors and spatial inhomogeneity in

Bayesian inverse problems, Bernoulli, 2023+

- M. Giordano, Besov priors in density estimation: optimal posterior

contraction rates and adaptation, arXiv:2208.14350

- S. Agapiou and A. Savva, Adaptive inference over Besov spaces in the

white noise model using p-exponential priors, arXiv:2209.06045 3
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Heavy-tailed Priors Avoid Tuning?

White Noise Model

Theorem (A., Dashti, Helin ’21)

Assume f0 ∈ Sβ . Consider S-regular p-exponential priors p ∈ [1, 2] with

τ = 1. Then the posterior contracts at rate

ϵn =

{
n−

β
1+2β+p(S−β) , if S > β

n−
S

1+2S , if S ≤ β

• If we could take p ↘ 0, for a fixed large S we would get the

minimax rate without tuning for β ∈ (0,S)!

• If we could take S → ∞, we would get the minimax rate for β > 0!
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Setup



Heavy-tailed Series Priors

For (φk) orthonormal basis, (ψlk) orthonormal wavelet basis of L2[0, 1]

f =
∞∑
k=1

σkζkφk(·), f =
∞∑
l=1

∑
k∈Kl

slζlkψlk(·)

where

σk = k−1/2−S or σk = e−(log k)2

sl = 2−l(1/2+S) or sl = 2−l2

We take i.i.d ζ’s from a heavy-tailed pdf h.
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Heavy-tailed Series Priors

HT Assumptions

For some constants c1, c2 > 0 and κ ≥ 0, assume

• h is symmetric, positive, bounded and decreasing on [0,∞)

•
log(1/h(x)) ≤ c1(1 + log1+κ(1 + x)), x ≥ 0

•
H(x) :=

∫ ∞

x

h(u)du ≤ c2
x2
, x ≥ 1

κ = 0: polynomial tails e.g. Cauchy or Student (for Cauchy H(x) ≍ x−1)
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Heavy-tailed Priors in Applied BNP

- A. Shah, A. Wilson and Z. Ghahramani, Student-t Processes as Alternatives to

Gaussian Processes, PMLR, 2014

- C. M. Carvalho, N. G. Polson, and J. G. Scott, The horseshoe estimator for

sparse signals, Biometrika, 2010

- S. van der Pas, B. Szabo and A. van der Vaart, Uncertainty quantification for

the horseshoe, Bayesian Analysis, 2017

- T. Sullivan, Well-posed Bayesian inverse problems and heavy-tailed stable

quasi-Banach space priors, Inverse Problems and Imaging, 2017

- M. Markkanen, L. Roininen, J. Huttunen and S. Lasanen, Cauchy difference

priors for edge-preserving Bayesian inversion, Journal of Inverse and Ill-posed

Problems, 2019

- J. Suuronen, N. Chada and L. Roininen, Cauchy Markov Random Field Priors for

Bayesian Inversion, Statistics and Computing, 2022
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Regularity Assumptions for the Truth

We will consider three types of smoothness assumptions:

• Sobolev: f0 ∈ S(β, L) for some β, L > 0 if

∞∑
k=1

k2βf 20,k ≤ L2.

• Hölder (Zygmund): f0 ∈ H(β, L) for some β, L > 0 if

2l(1/2+β) max
k∈Kl

|f0,lk | ≤ L.

• Besov: f0 ∈ B(β, r , L), for some β > 0, 1 ≤ r ≤ 2, L > 0 if

∞∑
l=1

2rl(β+1/2−1/r)
∑
k∈Kl

|flk |r ≤ Lr .

For r < 2 spatial inhomogeneity
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Contraction in the White Noise

Model



White Noise Model

• Equivalently consider the normal sequence model

Xk |fk ∼ N (fk , 1/n) (single index)

or

Xlk |flk ∼ N (flk , 1/n) (double index)

• We denote by X (n) the corresponding observation sequence.

9



White Noise Model

• Equivalently consider the normal sequence model

Xk |fk ∼ N (fk , 1/n) (single index)

or

Xlk |flk ∼ N (flk , 1/n) (double index)

• We denote by X (n) the corresponding observation sequence.

Moment Assumption∫ ∞

−∞
x2h(x)dx <∞ or

∫ ∞

−∞
|x |qh(x)dx <∞, q ≥ 1
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Contraction in L2-loss, White Noise Model

Theorem (A and Castillo ’23+)

Let Π be a heavy-tailed series prior defined via an orthonormal basis

(φk), for h satisfying the HT Assumptions and the Moment Assumption

with q = 2.

Let f0 ∈ S(β, L) for L > 0 and consider one of the next two settings:

• σk = k−1/2−S for S ≥ β;

• σk = e−(log k)2 , β > 0.

Then in either setting, as n → ∞

Ef0

[∫
∥f − f0∥22dΠ(f |X )

]
≲ n−

2β
2β+1 (log n)d ,

for some d > 0.
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Contraction in L∞-loss, White Noise Model

Theorem (A and Castillo ’23+)

Let Π be a heavy-tailed series prior defined via an orthonormal wavelet

basis (ψlk), for h satisfying the HT Assumptions and the Moment

Assumption with q ≥ 1.

Let f0 ∈ H(β, L) for L > 0 and consider one of the next two settings:

• sl = 2−l(1/2+S) for S > {(1/q + β
1+2β ) ∨ β};

• sl = 2−l2 , β > 0.

Then in either setting, as n → ∞

Ef0

[∫
∥f − f0∥∞dΠ(f |X )

]
≲ (n/ log n)−

β
2β+1 (log n)d ,

for some d > 0.
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Contraction in White Noise Model

Corollary

By Markov inequality, the two last results imply in their corresponding

settings that as n → ∞

Ef0Π[{f : ∥f − f0∥2 > Lnn
− β

2β+1 } |X (n)] → 0,

and

Ef0Π[{f : ∥f − f0∥∞ > Ln(n/ log n)
− β

2β+1 } |X (n)] → 0,

respectively, where Ln = (log n)d for some d > 0.
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Contraction in White Noise Model - Proof Ideas

• L2-loss with σk = k−1/2−S and |f0,k | ≲ k−1/2−β , other cases similar

• Need to bound

Ef0

[∫
∥f − f0∥22dΠ(f |X )

]
,

work coefficient-wise

• Using heavy tails assumption

Ef0

∫
(fk − f0,k)

2dΠ(f |X ) ≲ n−1 log1+κ

(
1 +

L+ 1/
√
n

σk

)
• For k ≤ Kn := n1/(1+2β), since σ−1

k ≤ σ−1
Kn

, bound logarithmic in n!

• The total contribution to the error of all k ≤ Kn, for any S > 0, is

≲ n−1(log n)dKn ≲ n−
2β

1+2β (log n)d
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Contraction in White Noise Model - Proof Ideas

• L2-loss with σk = k−1/2−S and |f0,k | ≲ k−1/2−β , other cases similar

• Need to bound

Ef0

[∫
∥f − f0∥22dΠ(f |X )

]
,

work coefficient-wise

• For k > Kn use (fk − f0,k)
2 ≤ 2f 2k + 2f 20,k

- Assumption on f0 implies 2nd term is small

- Oversmoothing prior suggests 1st term also small under the posterior

- Delicate analysis shows that for S ≥ β the contribution to the

squared error is also n− 2β
1+2β (log n)d
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Behaviour of Student Prior

- X ∼ N (f , 10−5)

- f ∼ σt3

- σ = 20−5.5 (left) and σ = (2e9)−5.5 (right) (S = 5)
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Behaviour of Student Prior

σ = 20−5.5 (blue) and σ = (2e9)−5.5 (red dashed)
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Behaviour of Student Prior

σ = 20−5.5 (blue) and σ = (2e9)−5.5 (red dashed)
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Similar to spike and slab prior
I. Johnstone and B. Silverman, Annals of Statistics, 2004, 2005
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Contraction in White Noise Model - Besov truth

• Besov spaces Bβ
rr with 1 ≤ r < 2 model spatial inhomogeneity

• Allow for large wavelet coefficients in high frequencies

• Gaussian priors are limited by the linear minimax rate n−
β+1/2−1/r
2+2β−2/r

- S. Agapiou and S. Wang, Laplace priors and spatial inhomogeneity in

Bayesian inverse problems, Bernoulli, 2023+

• Laplace priors can achieve the minimax rate (r = 1) or nearly the

minimax rate (r > 1), but require tuning both S and τ

- S. Agapiou, M. Dashti and T. Helin, Rates of contraction of posterior

distributions based on p-exponential priors, Bernoulli, 2021

- S. Agapiou and A. Savva, Adaptive inference over Besov spaces in the

white noise model using p-exponential priors, arXiv:2209.06045
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Contraction in White Noise Model - Besov truth

Theorem (A and Castillo ’23+)

Let Π be a heavy-tailed series prior defined via an orthonormal wavelet

basis (ψlk), for h satisfying the HT Assumptions and the Moment

Assumption with q = 2.

Let f0 ∈ B(β, r , L) for 1 ≤ r ≤ 2, L > 0 and β > 1/r − 1/2.

Then for sl = 2−l2 , as n → ∞

Ef0

[∫
∥f − f0∥22dΠ(f |X )

]
≲ n−

2β
2β+1 (log n)d ,

for some d > 0.
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General Results - ρ-posteriors



Generic Prior Mass Condition in L2-loss

Theorem (A and Castillo ’23+)

Let Π be a heavy-tailed series prior defined via an orthonormal basis

(φk), for h satisfying the HT Assumptions.

Let f0 ∈ S(β, L) for L > 0 and consider one of the next two settings:

• σk = k−1/2−S for S > 1/2, β ≤ S ;

• σk = e−(log k)2 , β > 0.

In either setting there exist c1, c2, d > 0 such that

Π[∥f − f0∥2 < c1εn] ≥ e−c2nε
2
n ,

with

εn = (log n)dn−
β

1+2β .
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Generic Prior Mass Condition in L∞-loss

Theorem (A and Castillo ’23+)

Let Π be a heavy-tailed series prior defined via an orthonormal wavelet

basis (ψlk), for h satisfying the HT Assumptions.

Let f0 ∈ H(β, L) for L > 0 and consider one of the next two settings:

• sl = 2−l(1/2+S) for S > 1/2, β ≤ S ;

• sl = 2−l2 , β > 0.

In either setting there exist c1, c2, d > 0 such that

Π[∥f − f0∥∞ < c1εn] ≥ e−c2nε
2
n ,

with

εn = (log n)dn−
β

2β+1 .

19



Generic Prior Mass Condition - Proof Ideas

• Focus on L2-loss with σk = k−1/2−S and f0 ∈ S(β, L), other cases
similar

• For some K to be chosen, split to low and high frequencies

Π[∥f−f0∥2 < ε] ≥ Π
[
∥f [K ] − f

[K ]
0 ∥2 < ε/2

]
Π
[
∥f [K

c ] − f
[K c ]
0 ∥2 < ε/2

]

• f0 ∈ S(β; L) implies even for small k the coefficients f0,k cannot be

too large and so prior puts substantial mass around them

• Since h is heavy tailed, even if σk decays very quickly

(oversmoothing prior), this mass is still substantial!

Π
[
∥f [K ] − f

[K ]
0 ∥2 < ε/2

]
≥ εK exp{−C1K log1+κ(C2/σK )}

≥ εK exp{−C ′
1K log1+κ K}
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]

Π
[
∥f [K

c ] − f
[K c ]
0 ∥2 < ε/2

]
≥ Π

[
∥f [K

c ]∥2 < ε/4
]
1l∥f [K

c ]
0 ∥2<ε/4

• f0 ∈ S(β; L) implies ∥f [K
c ]

0 ∥2 is small for large K

• For S large enough and ε ≍ K−β logK

Π
[
∥f [K

c ]∥2 < ε/4
]
≥ exp(−C3K )
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Generic Prior Mass Condition - Proof Ideas

• For some K to be chosen, split to low and high frequencies

Π[∥f−f0∥2 < ε] ≥ Π
[
∥f [K ] − f

[K ]
0 ∥2 < ε/2

]
Π
[
∥f [K

c ] − f
[K c ]
0 ∥2 < ε/2

]

• Combining, for large K and ε ≍ K−β logK it holds

Π[∥f − f0∥2 < ε] ≥ exp{−CK log1+κ K}

• Optimize choice K = K (n) so that ε ≍ K−β logK as small as

possible while K log1+κ K ≍ nε2
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Contraction Results for ρ-posteriors

• Both results can be extended to cover Cauchy priors (H(x) ≍ x−1),

provided S > 1 for the S-regular cases.

• Combining with Theorem 8.43 of GV17, these prior mass conditions

imply contraction results for pseudo-posteriors

Π(ρ)(θ ∈ B|X ) =

∫
B
pρθ (X )dΠn(θ)∫
pρθ (X )dΠn(θ)

, ρ ∈ (0, 1).

• Example 8.44 of GV17 shows that for i.i.d observations, under the

prior mass condition Π(θ : K (pf0 ; pf ) < ε2n) ≥ exp(−nε2n), we have

Π(ρ)
n (dH(pf0 , pf ) > Mnεn |X1, . . . ,Xn) → 0,

for any Mn → ∞.

S. Ghoshal and A. vd Vaart, Fundamentals of nonparametric Bayesian inference, 2017.
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Contraction Results for ρ-posteriors

• e.g. density estimation with

pf (x) =
ef (x)∫
ef (x)dx

and a prior on f

• Lemma 2.5 of GV17 shows

K (pf ; pg ) ≲ ∥f − g∥2∞e∥f−g∥∞(1 + ∥f − g∥∞)

• The prior mass condition in L∞-loss suffices for showing contraction

of ρ-posteriors in Hellinger distance at the nearly minimax rate εn
over Hölder smoothness

• Partial adaptivity sl = 2−(1/2+S)l / adaptivity sl = 2−l2 (up to logs)
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Simulations



White Noise Model - Sobolev Truth

• Study linear inverse problem in simulations of
B. Knapik, B. Szabo, A. van der Vaart and H. Zanten, Bayes procedures for

adaptive inference in inverse problems for the white noise model, PTRF, 2016

• Equivalent to normal sequence model

Xk ∼ N (λk fk , 1/n)

defined wrt the eigenbasis of the forward operator

φk(t) =
√
2 cos(π(k − 1/2)t), t ∈ [0, 1]

where

λk = π/(k − 1/2)

are the corresponding eigenvalues

• Coefficients of truth

f0,k = k−3/2 sin(k)

“Sobolev regularity β = 1”
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White Noise Model - Sobolev Truth

• Priors

- Gaussian hierarchical regularity prior:

fk |S ∼ N (0, σ2
k), σk = k−1/2−S , S ∼ Exp(1)

- Student t3 oversmoothing prior 1: σk = k−1/2−S , S = 5

- Student t3 oversmoothing prior 2: σk = e−(log k)3/2

• Truncate up to k = 200

• Gaussian hierarchical: use non-centered Gibbs sampler

• Student: product of univariate problems, use RW Metropolis on each

24



White Noise Model - Sobolev Truth - Full Posteriors

n = 105

n = 107

n = 109
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White Noise Model - Sobolev Truth - ρ-posteriors

Student t3, decay 2

n = 105

n = 107

n = 109
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White Noise Model - NMR Signal

• Denoising (no inversion) NMR signal

• Expand in Symmlet 6 wavelet basis (ψlk) truncated at l = 9

Xlk ∼ N (flk , 1/n)

• Student t3 oversmoothing prior on flk with

sl = 2−l3/2 , ∀k ∈ Kl

• Product of univariate problems, use RW Metropolis to sample each

posterior
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0
20

40
60

J. Buckheit, S. Chen, D. Donoho, I. Johnstone, and J. Scargle, Wavelab 850 27



White Noise Model - NMR Signal
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White Noise Model - NMR Signal
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Density Estimation - Full Posteriors

• X (n) = (X1, . . . ,Xn) where Xj
iid∼ p(x), x ∈ [0, 1]

• p : [0, 1] → R+ unknown density, modelled as

p(x) =
ef (x)∫
ef (x)dx

• True density p0 defined via f0, which has coefficients wrt Symmlet 8

wavelet basis

f0,lk = 4 cos3(2l + k)2−(5/2)l

Hölder-Zygmund regularity β = 2
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Density Estimation - Full Posteriors

• Wavelet priors on f

- Gaussian oversmoothing prior: sl = 2−(1/2+S)l , S = 5

- Cauchy oversmoothing prior 1: sl = 2−(1/2+S)l , S = 5

- Cauchy oversmoothing prior 2: sl = 2−l3/2

• Sampled posterior using Whitened Precondition Crank-Nicolson

algorithm, based on orthogonal transformation for Cauchy

V. Chen, M. Dunlop, O. Papaspiliopoulos and A. Stuart, Dimension robust

MCMC in Bayesian inverse problems, arXiv:1803.03344
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Density Estimation - Full Posteriors

n = 102

n = 104

n = 106
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Density Estimation - ρ-posteriors

Cauchy prior 2

n = 102

n = 104

n = 106

ρ = 1 ρ = 0.6 ρ = 0.2
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Conclusion



Outlook

Summary:

• Adaptivity with minimal/no tuning with heavy tailed priors

• Posterior contraction results for WNM

• Generic prior mass condition can give ρ-posterior contraction results

for general models

• Results in L2 and L∞ losses, for Sobolev, Hölder and Besov truths

• Promising simulations, despite multimodal posteriors

Still to do:

• Uncertainty quantification

• Inverse problems

• Posterior contraction for general models

• Computation
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Thank you!
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